DOI QR코드

DOI QR Code

Seedling Plug and Cutting Method for Multi-propagation of Ornamental Miscanthus Spp.

조경용 억새의 대량번식을 위한 플러그묘와 삽목번식법

  • Hwang, Kyung Sik (Dept. of Biological Sci. and Tech., Graduate School of Yonsei University) ;
  • Joo, Song Tak (Dept. of Biological Sci. and Tech., Graduate School of Yonsei University) ;
  • Ha, Soo Sung (Dept. of Biological Sci. and Tech., Graduate School of Yonsei University) ;
  • Kim, Ki Dong (Dept. of Biological Sci. and Tech., Graduate School of Yonsei University) ;
  • Joo, Young Kyoo (Dept. of Biological Sci. and Tech., Graduate School of Yonsei University)
  • 황경식 (연세대학교 대학원 생명과학기술학과) ;
  • 주송탁 (연세대학교 대학원 생명과학기술학과) ;
  • 하수성 (연세대학교 대학원 생명과학기술학과) ;
  • 김기동 (연세대학교 대학원 생명과학기술학과) ;
  • 주영규 (연세대학교 대학원 생명과학기술학과)
  • Received : 2018.06.11
  • Accepted : 2018.09.05
  • Published : 2018.09.30

Abstract

Miscanthus species are known as a genus of eco-friendly and low-maintenance cost ornamental grasses. Plug and cutting methods were tested for multi-propagation of most promising ornamental Miscanthus species in greenhouse and field plot. The plug formation period with three different cell sizes with four cultivars (M. sinensis 'Andersson', 'Strictus', 'Gracillimus', 'Variegatus') were evaluated the seedling development stages with two irrigation types of the over-head and the bottom watering in greenhouse and field plot afterward during 2015-2016 season. In seedling plug test, the size of tray cell affected the plug formation. Bottom irrigation resulted positively on plant height, weight, root and tiller development compared with the over-head irrigation. Plug cell size affected the plant growth in the field after transplanting. All of the 3 Miscanthus species showed higher rates of successful propagation at the lower nodes before inflorescence formation (vegetative growth stage). To analyze the survival factors of M. xgiganteus cutting, the cutting time, node part, and culm diameter were tested as independent variables with the binary logistic model. The survival probability was influenced by node part and culm diameter significantly. The third and fifth node parts showed 0.12 (8X higher failure probability) and 0.02 (50X higher failure probability) times less survival probability. It means the survival probability will be increased by using older and lower part of cuttings during a vegetative growth stage before inflorescences of M. xgiganteus.

억새(Miscanthus spp.)는 경관성이 우수하고 환경친화적이며 저관리가 가능한 종 들로 알려져 있다. 플러그묘를 통한 대량번식을 위해 4가지 품종의 억새(M. sinensis 'Andersson', 'Strictus', 'Gracillimus', 'Variegatus')와 삽목번식을 위한 3가지 품종의 억새(M. sinensis 'Gracillimus', M. xgiganteus, M. sacchariflorus)를 예비실험을 통해 선발하여 플러그 형성, 정식 후의 생육, 그리고 삽목 활착률 실험을 2015-2016년에 온실과 실험포장에서 실시하였다. 2가지 관수방법과 3가지 플러그 셀 크기로 종자로부터 플러그묘 형성과정 실험에서는 매트를 이용한 저면관수와 작은 크기의 플러그 셀이 양호한 결과를 보였다. 삽목실험에서 삽수채취 시기, 마디 부위, 삽수의 직경이 활착율에 미치는 영향을 분석한 결과 억새 공시 3종 모두 하부 마디에서 채취한 삽수가 높은 활착율을 보였으며 삽수 채취 시기는 화서가 발생 하기 전 그리고 목질화가 진행되어 삽수의 직경이 작은 하부마디가 높은 활착율을 보였다. 생존율의 차이가 뚜렷한 M. xgiganteus는 삽수채취 시기와 삽수 부위 및 삽수 직경에 따른 삽목의 성공여부(생존 혹은 고사)는 이분형 로지스틱 회귀모델(dichotomous logistic regression model)을 이용하여 분석 판정하였다. 그 결과 삽목 시기는 7월이 6월에 비하여 1.64배 정도 활착 성공률이 높았으며, 삽수 채취 마디부위는 1번째 마디를 기준으로 승산비(성공율/실패율)는 3번째 마디와 5번째 마디는 0.12와 0.02로, 각각 8배와 50배의 활착 실패율을 보였다. 즉 늦게 발달한 상대적으로 굵은 신생 줄기 마디는 목질화가 진행된 묵은 마디에 비해 직경은 크지만 생존율은 낮아졌다. 따라서 억새속 삽목번식은 화서가 분화되기 시작하는 9월 이전에 아래쪽 묵은 마디로 삽수로 사용하여 대량 번식을 하는 것이 바람직하다고 판단된다.

Keywords

References

  1. An, K.B., Lee, Y.S., Lee, G.Y. and Son, K.C. 2005. Efect of irrigation methods on the growth of early stage labor-Ssaving of Cyclamen persicum Mill. Flo. Res. J. Vol. 13(3):169-172. (In Korean)
  2. Ceotto, E. and Di Candilo, M. 2010. Shoot cuttings propagation of giant reed (Arundo donax L.) in water and moist soil. Biomass and Bioenergy. 34(11):1614-1623. https://doi.org/10.1016/j.biombioe.2010.06.002
  3. Cho, S.R., Kim, J.H. and Shim, S.R. 2015. Practical use of several ground covers on a slope revegetation construction -Miscanthus sinensis var. purpurascens, Festuca arundinacea, Pennisetum alopecuroides, Zoysia japonica. J. Korean Env. Res. Tech. 18(3):97-107. (In Korean)
  4. Corley, W. 1989. Propagation of ornamental grasses adapted to Georgia and the US Southeast. Comb. Proc. Int'l Plant Propagators' Soc. 39:332-337.
  5. Joo, Y.K. 2013. Ornamental grasses: New plant materials which have high ornamental values. pp. 38-47. Korea Turfgrass Research Institute, Sungnam, Korea. (In Korean).
  6. Kim, M.H., Han, M.S., Kang, K.K., Na, Y.E. and Bang, H.S. 2011. Efects of climate change on C4 plant list and distribution in South Korea: A Review. Korean J. Agr. and For. Met. 13(3):123-139. (In Korean) https://doi.org/10.5532/KJAFM.2011.13.3.123
  7. Kim, Y.S. 2017. Seedling quality, and early growth and fruit productivity after transplanting of squash as affected by plug cell size and seedling raising period. M.S. Diss., Gyeongsang National Univ., Jinju, Korea. (In Korean)
  8. Kim, Y.S., Jeong, Y.O., Park, J.C. and Huh, M.R. 2002. Efect of irrigation methods on the early growth of Phalaenopsis Dtps. J. Korean Soc. Peo. Plant and Env. 5(2):35-39. (In Korean)
  9. KNA (Korea National Arboretum). 2007. Korean Plant Names Index Committee. KNA, Pocheon, Korea.
  10. Ko, Y.J. 2015. A Study on Characteristics of ornamental grasses and the practical uses in urban spaces. M. S. Diss., Chonbuk National Univ., Jeonju, Korea. (In Korean)
  11. Lee, C.H. 2010. A study on the industrialization plan of forest ornamental resources. Research Report. Korea Forest Service, Deajeon, Korea. (In Korean)
  12. Ministry of Agriculture and Forestry. 2006. Selecting variegated Korean native Miscanthus sinensis and production of Pennisetum alopecuroides as pot plant. Ministry of Agriculture and Forestry, Jeonju, Korea. (In Korean)
  13. Rhee, D.S., Lee, D.H., Kim, M.H. 2012. Roughness coefcients evaluation of the Korean riparian vegetation. J. Korean Soci. Civil Eng. B. 32(6):345-354. (In Korean)
  14. Song, K.H. 2006. Silver grass and its kinds. ECO-LAC. 9, Landscape Architecture Korea, Seoul, Korea. (In Korean)