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EXISTENCE OF POSITIVE SOLUTIONS FOR THE SECOND

ORDER DIFFERENTIAL SYSTEMS WITH STRONGLY

COUPLED INTEGRAL BOUNDARY CONDITIONS

Eun Kyoung Lee

Abstract. This paper concerned the existence of positive solutions to the

second order differential systems with strongly coupled integral boundary
value conditions. By using Krasnoselskii fixed point theorem, we prove

the existence of positive solutions according to the parameters under the

proper nonlinear growth conditions.

1. Introduction

In this paper, we study the existence of the following differential system;

u′′(t) + λa1(t)f1(u(t), v(t)) = 0, t ∈ (0, 1),

v′′(t) + λa2(t)f2(u(t), v(t)) = 0, t ∈ (0, 1),

u(0) = 0 = v(0),

u(1) =
∫ 1

0
g1(s)u(s) + g2(s)v(s)ds,

v(1) =
∫ 1

0
g3(s)u(s) + g4(s)v(s)ds

(1)

where ai ∈ C((0, 1), [0,∞)), fi ∈ C([0,∞)2), [0,∞)) and gi ∈ L1((0, 1), [0,∞)),
for i ∈ {1, 2, 3, 4}. We further assume that there exists a closed interval J ⊂
(0, 1) with positive measure such that ai(t) > 0 for all t ∈ J and i = 1, 2.
Such differential equations with an integral boundary condition arise in various
areas of applied mathematics and physics like heat conduction, chemical en-
gineering, underground water flow, thermo-elasticity, hydro dynamic problems
and plasma phenomena. One may refer to [1], [3], [4], [5] and [2] for integral
boundary value problems and the references therein. Recently, many works have
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been done for second odrder ordinary differential systems with integral bound-
ary conditions ([6], [7], [8], [9], [10], [11]), but most of papers considered the
differntial systems with uncoupled or weakly coupled boundary conditons. For
example, in [11], authors considered the following systems with weakly coupled
integral boundary conditions,

−x′′(t) = f1(t, x(t), y(t)), t ∈ (0, 1),

−y′′(t) = f2(t, x(t), y(t)), t ∈ (0, 1),

x(0) = 0 = y(0),

x(1) =
∫ 1

0
y(t)dA(t),

y(1) =
∫ 1

0
x(t)dB(t)

(2)

They prove the existence of positive solutions for (2) when fi satisfy some
growth conditions which imply the monotonicity of fi.

In this paper, the problem (1) has more general strongly coupled integral
boundary conditions, which makes the operaor Tλ (see Section 2 for definition)
complicated and induces substantial difficulties in proving our results. Through-
out this paper, we assume the following hypotheses;

(H0)
∫ 1

0
s(1− s)ai(s)ds <∞ for i = 1, 2.

(H1) 0 < fi,0 := lim
|u|+|v|→0

fi(u, v)

u+ v
<∞ for i = 1, 2.

(H2) 0 < fi,∞ := lim
|u|+|v|→∞

fi(u, v)

u+ v
<∞, for i = 1, 2.

(H3) 0 <
∫ 1

0
sgi(s)ds < 1 for i = 1, 4 and

(1−
∫ 1

0

sg1(s)ds)(1−
∫ 1

0

sg4(s)ds)− (

∫ 1

0

sg2(s)ds)(

∫ 1

0

sg3(s)ds) > 0

This paper is organized as follows. In Section 2, we present the solution
operator to problem (1) and introduce the well-known fixed point theorem which
will be used to prove our main result. In Section 3, the main results, Theorem
3.1 and Theorem 3.2, are proven. In Section 4, as applications, the reaults for
the existence of radial solutions for the semilinear elliptic systems on exterior
domain are given.

2. Preliminaries

In this section, we set up the operator equation for the problem (1). By
(H3), let

A :=

(
1−

∫ 1

0
sg1(s)ds −

∫ 1

0
sg2(s)ds

−
∫ 1

0
sg3(s)ds 1−

∫ 1

0
sg4(s)ds

)
,
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then detA 6= 0 and let

A−1 =

(
a11 a12

a21 a22

)
.

Here, we note that from (H3), aij > 0 for all i, j ∈ {1, 2}. Let us denote
X := C([0, 1],R) × C([0, 1],R) where X is the usual Banach space with the
norm ‖(u, v)‖ = ‖u‖∞ + ‖v‖∞.

We define Aλ and Bλ from X to C([0, 1],R) by

Aλ(u, v)(t) := λ
∫ 1

0
H1(t, s)a1(s)f1(u(s), v(s)) + tK1(s)a2(s)f2(u(s), v(s))ds

Bλ(u, v)(t) := λ
∫ 1

0
H2(t, s)a2(s)f2(u(s), v(s)) + tK2(s)a1(s)f1(u(s), v(s))ds

where

H1(t, s) = G(t, s) + t

∫ 1

0

G(τ, s)(a11g1(τ) + a12g3(τ))dτ,

H2(t, s) = G(t, s) + t

∫ 1

0

G(τ, s)(a21g2(τ) + a22g4(τ))dτ,

K1(s) =

∫ 1

0

G(τ, s)(a11g2(τ) + a12g4(τ))dτ,

K2(s) =

∫ 1

0

G(τ, s)(a21g1(τ) + a22g3(τ))dτ,

and

G(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1

Now we define

Tλ(u, v)(t) := (Aλ(u, v)(t), Bλ(u, v)(t)).

Then Tλ : X → X is well defined and notice that the problem (1) is equivalent
to the following operator equation;

(u, v) = Tλ(u, v) on X.

Let P = {(u, v) ∈ X : u(t) ≥ 0, v(t) ≥ 0 for all t ∈ [0, 1]}. Then P is a cone
in X. It is clear that Tλ(P) ⊂ P and Tλ is completely continuous on X, by
standard argument.

We recall J ⊂ (0, 1) is a nondegenerate closed interval such that ai(t) > 0
for all t ∈ J and i = 1, 2. Let γ = min{j∗, 1 − j∗} > 0 where j∗ = inf J and
j∗ = sup J. Here we define K by

K = {(w1, w2) ∈ P : min
J
wi(t) ≥ γ‖wi‖∞, for i = 1, 2}.

Then K is cone and we have the following lemma.
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Remark 1. It is easy to check that

G(t, s) ≤ s(1− s), t, s ∈ (0, 1). (3)

and

G(t, s) ≥ γs(1− s), t ∈ J, s ∈ (0, 1). (4)

Lemma 2.1. For a given cone P in X, it holds that

Tλ(P) ⊂ K.

Proof. For given (u, v) ∈ P, from (3), we first find for t ∈ [0, 1],

Aλ(u, v)(t) = λ

∫ 1

0

H1(t, s)a1(s)f1(u(s), v(s)) + tK1(s)a2(s)f2(u(s), v(s))ds

≤ λ
∫ 1

0

h1(s)a1(s)f1(u(s), v(s)) +K1(s)a2(s)f2(u(s), v(s))ds

where

h1(s) = s(1− s) +

∫ 1

0

G(τ, s)(a11g1(τ) + a12g3(τ))dτ.

Thus, we obtain

‖Aλ(u, v)‖∞ ≤ λ
∫ 1

0

h1(s)a1(s)f1(u(s), v(s)) +K1(s)a2(s)f2(u(s), v(s))ds (5)

Similarly, we have

‖Bλ(u, v)‖∞ ≤ λ
∫ 1

0

h2(s)a2(s)f2(u(s), v(s)) +K2(s)a1(s)f1(u(s), v(s))ds (6)

where

h2(s) = s(1− s) +

∫ 1

0

G(τ, s)(a21g2(τ) + a22g4(τ))dτ,

Then by (4) and (5), we find that for all t ∈ J,

Aλ(u, v)(t) = λ

∫ 1

0

H1(t, s)a1(s)f1(u(s), v(s)) + tK1(s)a2(s)f2(u(s), v(s))ds

≥ λγ
(∫ 1

0

h1(s)a1(s)f1(u(s), v(s)) +K1(s)a2(s)f2(u(s), v(s))ds

)
≥ γ‖Aλ(u, v)‖∞

From the same argument we also have that Bλ(u, v)(t) ≥ γ‖Bλ(u, v)‖∞ for all
t ∈ J by using (6). �

To prove our main result, we use the following fixed point theorem in a cone
due to Guo and Lakshmikantham [12].
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Theorem 2.2. (Fixed point theorem)
Let X is a real banach space, K is a cone of X. Assume that Ω1 , Ω2 are openset
of X with 0 ∈ Ω1 ⊆ Ω1 ⊆ Ω2 and let T : K ∩ (Ω2 \ Ω1) −→ K be completely
continuous and satisfying either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2

or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2

Then T has a fixed point in K ∩ (Ω2 \ Ω1)

3. Main Result

In this section, we establish the existence results for positive solutions of (1).

Theorem 3.1. Assume (H0) ∼ (H3) and λ∗ < λ∗ when

λ∗ = min { 1

f1,0

∫ 1

0
h1(s)a1(s)ds+ f2,0

∫ 1

0
K1(s)a2(s)ds

,

1

f2,0

∫ 1

0
h2(s)a2(s)ds+ f1,0

∫ 1

0
K2(s)a1(s)ds

}

λ∗ = max { 1

γ2(f1,∞
∫
J
h1(s)a1(s)ds+ f2,∞

∫ 1

0
K1(s)a2(s)ds)

,

1

γ2(f2,∞
∫
J
h2(s)a2(s)ds+ f1,∞

∫ 1

0
K2(s)a1(s)ds)

}

where

h1(s) = G(s, s) +

∫ 1

0

G(τ, s)(a11g1(τ) + a12g3(τ))dτ,

h2(s) = G(s, s) + t

∫ 1

0

G(τ, s)(a21g2(τ) + a22g4(τ))dτ.

Then for all λ satisfying
1

2
λ∗ < λ <

1

2
λ∗,

there exist at least one positive solution of (1).

Proof. Let λ be given as hypothesis. Choose ε > 0 as

λ <
1

2((f1,0 + ε)
∫ 1

0
h1(s)a1(s)ds+ (f2,0 + ε)

∫ 1

0
K1(s)a2(s)ds)

and

λ <
1

2((f2,0 + ε)
∫ 1

0
h2(s)a2(s)ds+ (f1,0 + ε)

∫ 1

0
K2(s)a1(s)ds)
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λ >
1

2γ2((f1,∞ − ε)
∫
J
h1(s)a1(s)ds+ (f2,∞ − ε)

∫ 1

0
K1(s)a2(s)ds)

and

λ >
1

2γ2((f2,∞ − ε)
∫
J
h2(s)a2(s)ds+ (f1,∞ − ε)

∫ 1

0
K2(s)a1(s)ds)

From (H1), there exists R1 such that fi(u, v) ≤ (fi,0 + ε)(u + v) when 0 <
|u|+|v| ≤ R1. Define Ω1 = {(u, v) ∈ X|‖(u, v)‖ < R1}. Then if (u, v) ∈ K∩∂Ω1,
then u(s) + v(s) ≤ ‖u‖∞ + ‖v‖∞ = ‖(u, v)‖ = R1 for all s ∈ [0, 1] and for
t ∈ [0, 1],

Aλ(u, v)(t) = λ

∫ 1

0

H1(t, s)a1(s)f1(u(s), v(s)) + tK1(s)a2(s)f2(u(s), v(s))ds

≤ λ
∫ 1

0

H1(t, s)a1(s)(f1,0 + ε)(u(s) + v(s))

+K1(s)a2(s)(f2,0 + ε)(u(s) + v(s))ds

≤ λ
∫ 1

0

h1(s)a1(s)(f1,0 + ε) +K1(s)a2(s)(f2,0 + ε)ds(‖u‖∞ + ‖v‖∞)

≤ 1

2
‖(u, v)‖.

Similarly, we can get

Bλ(u, v)(t) ≤ 1

2
‖(u, v)‖ for t ∈ [0, 1]

Thus ‖Tλ(u, v)‖∞ ≤ ‖Aλ(u, v)‖∞ + ‖Bλ(u, v)‖∞ ≤ ‖(u, v)‖ for u ∈ K ∩ ∂Ω1.
Next, from (H2), there exist R2 > 0 such that fi(u, v) ≥ (fi,∞− ε)(u+ v) when

|u| + |v| ≥ R2. Let R2 = max{2R1,
1
γR2} and let Ω2 = {(u, v) ∈ X|‖(u, v)‖ <

R2}, then Ω1 ⊂ Ω2 and if (u, v) ∈ K ∩ ∂Ω2, then we know that

min
t∈J

(u(t) + v(t)) ≥ γ(‖u‖∞ + ‖v‖∞) = γR2 ≥ R2.

For t ∈ J,

Aλ(u, v)(t) = λ

∫ 1

0

H1(t, s)a1(s)f1(u(s), v(s)) + tK1(s)a2(s)f2(u(s), v(s))ds

≥ λ
∫
J

H1(t, s)a1(s)f1(u(s), v(s)) + tK1(s)a2(s)f2(u(s), v(s))ds

≥ λ
∫
J

H1(t, s)a1(s)(f1,∞ − ε)(u(s) + v(s))

+ γK1(s)a2(s)(f2,∞ − ε)(u(s) + v(s))ds

≥ λγ2

(∫
J

h1(s)a1(s)(f1,∞ − ε) + γK1(s)a2(s)(f2,∞ − ε)ds
)
‖(u, v)‖

≥ 1

2
‖(u, v)‖.
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Similarly, we can get

Bλ(u, v)(t) ≥ 1

2
‖(u, v)‖ for t ∈ J

Thus ‖Tλ(u, v)‖∞ = ‖Aλ(u, v)‖∞ + ‖Bλ(u, v)‖∞ ≥ ‖(u, v)‖ for u ∈ K ∩ ∂Ω2.
By Theorem 2.2, Tλ has a fixed point (u, v) ∈ K ∩ (Ω2 \ Ω1). �

The following result looks similar with Theorem 3.1, but the proof is different
because of the growth conditions.

Theorem 3.2. Assume (H0) ∼ (H3) and λ < λ when

λ = min { 1

f1,∞
∫ 1

0
h1(s)a1(s)ds+ f2,∞

∫ 1

0
K1(s)a2(s)ds

,

1

f2,∞
∫ 1

0
h2(s)a2(s)ds+ f1,∞

∫ 1

0
K2(s)a1(s)ds

}

λ = max { 1

γ2(f1,0

∫
J
h1(s)a1(s)ds+ f2,0

∫ 1

0
K1(s)a2(s)ds)

,

1

γ2(f2,0

∫
J
h2(s)a2(s)ds+ f1,0

∫ 1

0
K2(s)a1(s)ds)

}

where h1 and h2 are the same in the Theorem 3.1. Then for all λ satisfying

1

2
λ < λ <

1

2
λ,

there exist at least one positive solution of (1).

Proof. Let λ be given as hypothesis. Choose ε > 0 as

λ <
1

2((f1,∞ + ε)
∫ 1

0
h1(s)a1(s)ds+ (f2,∞ + ε)

∫ 1

0
K2(s)a2(s)ds)

and

λ <
1

2((f2,∞ + ε)
∫ 1

0
h2(s)a2(s)ds+ (f1,∞ + ε)

∫ 1

0
K1(s)a1(s)ds)

λ >
1

2γ2((f1,0 − ε)
∫
J
h1(s)a1(s)ds+ (f2,0 − ε)

∫ 1

0
K2(s)a2(s)ds)

and

λ >
1

2γ2((f2,0 − ε)
∫
J
h2(s)a2(s)ds+ (f1,0 − ε)

∫ 1

0
K1(s)a1(s)ds)

There exists R1 such that fi(u, v) ≥ (fi,0 − ε)(u + v) when 0 < |u| + |v| ≤ R1.
Define Ω1 = {(u, v) ∈ X|‖(u, v)‖ < R1}. Then for (u, v) ∈ K ∩ ∂Ω1, by using

min
t∈J

(u(t) + v(t)) ≥ γ(‖u‖∞ + ‖v‖∞),
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we have for t ∈ J

Aλ(u, v)(t) = λ

∫ 1

0

H1(t, s)a1(s)f1(u(s), v(s)) + tK1(s)a2(s)f2(u(s), v(s))ds

≥ λ
∫
J

H1(t, s)a1(s)f1(u(s), v(s)) + tK1(s)a2(s)f2(u(s), v(s))ds

≥ λ
∫
J

H1(t, s)a1(s)(f1,0 − ε)(u(s) + v(s))

+ γK1(s)a2(s)(f2,0 − ε)(u(s) + v(s))ds

≥ λγ2

(∫
J

h1(s)a1(s)(f1,0 − ε) + γK1(s)a2(s)(f2,0 − ε)ds
)
‖(u, v)‖

≥ 1

2
‖(u, v)‖.

Similarly, we can get

Bλ(u, v)(t) ≥ 1

2
‖(u, v)‖ for t ∈ J.

Thus ‖Tλ(u, v)‖∞ ≥ ‖Aλ(u, v)‖∞ + ‖Bλ(u, v)‖∞ ≥ ‖(u, v)‖ for u ∈ K ∩ ∂Ω1.
Next, if we define the function f i ∈ C(R2

+,R+) for i = 1, 2 by f i(u, v) =

max(x,y)∈[0,u]×[0,v] f(x, y), then it is easy to check that fi(u, v) ≤ f i(u, v) for all

(u, v) ∈ R2
+, f i are monotone increasing and

lim
u+v→∞

f i(u, v)

u+ v
= fi,∞. (7)

From (7), there exist R2 > 0 such that f i(u, v) ≤ (fi,∞ + ε)(u + v) when

|u| + |v| ≥ R2. Let R2 = max{2R1, R2} and Ω2 = {(u, v) ∈ X|‖(u, v)‖ < R2},
then Ω1 ⊂ Ω2 and if (u, v) ∈ K∩∂Ω2, then‖(u, v)‖ = ‖u‖∞+‖v‖∞ = R2 ≥ R2,
and for t ∈ [0, 1],

Aλ(u, v)(t) = λ

∫ 1

0

H1(t, s)a1(s)f1(u(s), v(s)) + tK1(s)a2(s)f2(u(s), v(s))ds

≤ λ
∫ 1

0

h1(s)a1(s)f1(u(s), v(s)) +K1(s)a2(s)f2(u(s), v(s))ds

≤ λ
∫ 1

0

h1(s)a1(s)f1(‖u‖∞, ‖v‖∞) +K1(s)a2(s)f2(‖u‖∞, ‖v‖∞)ds

≤ λ
(∫ 1

0

h1(s)a1(s)(f1,∞ + ε) +K1(s)a2(s)(f2,∞ + ε)ds

)
‖(u, v)‖

≤ 1

2
‖(u, v)‖.

Similarly, we can get

Bλ(u, v)(t) ≤ 1

2
‖(u, v)‖ for all t ∈ [0, 1].
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Thus ‖Tλ(u, v)‖∞ ≤ ‖Aλ(u, v)‖∞ + ‖Bλ(u, v)‖∞ ≤ ‖(u, v)‖ for u ∈ K ∩ ∂Ω2.
By Theorem 2.2, Tλ has a fixed point (u, v) ∈ K ∩ (Ω2 \ Ω1). �

4. Application

In this section, we consider the existence of positive radial solutions to the
following integral boundary value system on an exterior domain:

∆u+ λk1(|x|)f1(u(x), v(x)) = 0, x ∈ Ωe,

∆v + λk2(|x|)f2(u(x), v(x)) = 0, x ∈ Ωe,

u(x)→ 0, v(x)→ 0, if ‖x‖ → ∞,

u(x) =
∫

Ωe
l1(|y|)u(y) + l2(|y|)v(y)dy, if ‖x‖ = r0,

v(x) =
∫

Ωe
l3(|y|)u(y) + l4(|y|)v(y)dy, if ‖x‖ = r0,

(8)

where Ωe = {x ∈ RN : ‖x‖∞ ≥ r0 for r0 > 0, N ≥ 3}, ki ∈ C((r0,∞), (0,∞)),
fi ∈ C([0,∞) × [0,∞)), [0,∞)), and li ∈ L1((r0,∞)), [0,∞)). We further as-
sume that there exists an interval I ⊂ (r0,∞) with positive measure such that
ki(r) > 0 for all r ∈ I and i = 1, 2.

By the change of variables r = |x| and t = ( rr0 )2−N , (8) can be transformed

into (1) with

ai(t) =

(
1

N − 2

)2

r2
0t

−2(N−1)
N−2 ki

(
r0t

−1
N−2

)
,

gi(t) = wN

(
1

N − 2

)
rN0 t

−2(N−1)
N−2 li

(
r0t

−1
N−2

)
,

and wN is the surface area of unit sphere in RN . Hence the existence of positive
solutions for the system (1) guarantees the existence of positive radial solutions
for (8). Thus we consider the following assumptions;

(H0′)
∫∞
r0
rki(r)dr <∞ for i = 1, 2.

(H3′) 0 < wNr
N−2
0

∫∞
r0
rli(r)dr < 1 for i = 1, 4 and

(w−1
N r2−N

0 −
∫ ∞
r0

rl1(r)dr)(w−1
N r2−N

0 −
∫ ∞
r0

rl4(r)dr)

−(

∫ ∞
r0

rl2(r)dr)(

∫ ∞
r0

rl3(r)dr) > 0

It is easy to check that (H0′) and (H3′) imply (H0) and (H3). Thus we can
apply Theorem 3.1 and Theorem 3.2 to obtain the following results.
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Corollary 4.1. Assume (H0′), (H1), (H2), and (H3′). If λ∗ < λ∗ when λ∗

and λ∗ are the ones defined in Theorem 3.1, then the problem (8) has at least
one positive radial solution for λ ∈ ( 1

2λ∗,
1
2λ
∗).

Corollary 4.2. Assume (H0′), (H1), (H2), and (H3′). If λ < λ when λ and
λ are the ones defined in Theorem 3.2, then the problem (8) has at least one
positive radial solution for λ ∈ ( 1

2λ,
1
2λ).
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