DOI QR코드

DOI QR Code

Tuning Backoff Period for Enhancing System Throughput with Estimating Number of Devices in IEEE 802.15.4 Slotted CSMA/CA

IEEE 802.15.4 슬롯 기반 CSMA/CA에서 시스템 처리율 향상을 위한 단말 수 추정을 통한 백오프 기간 튜닝 기법

  • Lee, Won Hyoung (Department of Computer Engineering, Kwangwoon University) ;
  • Hwang, Ho Young (School of Computer and Information Engineering, Kwangwoon University)
  • Received : 2018.06.25
  • Accepted : 2018.07.30
  • Published : 2018.09.30

Abstract

In this paper, we propose a scheme that tunes the backoff period for enhancing the system throughput with estimating the number of devices in IEEE 802.15.4 slotted carrier sense multiple access with collision avoidance (CSMA/CA) networks. Since each device does not sense the channel always in IEEE 802.15.4 slotted CSMA/CA networks, a personal area network (PAN) coordinator is used to estimate the number of active devices. The PAN coordinator broadcasts an optimal backoff period for the estimated number of devices through a beacon frame. In order to estimate the number of devices in run time, a simple moving average filter is utilized. We show the performance of our proposed scheme in terms of the estimated number of devices and the system throughput. The simulation results show that our proposed scheme can obtain higher system throughput than the IEEE 802.15.4 standard.

본 논문에서는 IEEE 802.15.4 슬롯 기반 CSMA/CA(Slotted Carrier Sense Multiple Access with Collision Avoidance) 네트워크에서 시스템 처리율 향상을 위해 동작 중인 단말 수 추정을 통한 백오프 기간 튜닝 기법을 제안한다. IEEE 802.15.4 슬롯 기반 CSMA/CA 네트워크에서는 각 단말이 채널을 항상 센싱하지는 않으므로, 제안하는 기법에서는 채널을 항상 센싱할 수 있는 PAN(Personal Area Network) 코디네이터를 사용하여 동작 중인 단말 수를 추정한다. 이 때, 실시간 단말 수 추정을 위해 단순 이동 평균 필터를 사용한다. PAN 코디네이터는 추정한 단말 수에 따라 튜닝한 최적의 백오프 기간을 비콘 프레임에 담아 PAN 코디네이터에 연결된 단말들에게 전달한다. 시뮬레이션을 통해 제안하는 기법의 단말 수 추정에 대한 성능과 시스템 처리율에 대한 성능을 평가한다. 시뮬레이션 결과를 통해 제안하는 기법이 IEEE 802.15.4 표준보다 더 높은 시스템 처리율을 얻을 수 있음을 보인다.

Keywords

References

  1. IEEE Standard 802.15.4, IEEE Standard for Low-Rate Wireless Networks, IEEE, 2015.
  2. M. Khanafer, M. Guennoun, and H. T. Mouftah, "A survey of beacon-enabled IEEE 802.15.4 MAC protocols in wireless sensor networks," IEEE Communications Survey & Tutorials, vol. 16, no. 2, pp. 856-876, Second Quarter 2014. https://doi.org/10.1109/SURV.2013.112613.00094
  3. J.-H. Huh, S.-M. Je, and K. Seo, "Design and simulation of foundation technology for Zigbee-based smart grid home network system using OPNET simulation," Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 5, no. 4, pp. 81-89, Aug. 2015.
  4. P. Park, "Routing and medium access control interactions for Internet of Things," Journal of the Korea Institute of Information and Communication Engineering, vol. 19, no. 10, pp. 2465-2472, Oct. 2015. https://doi.org/10.6109/jkiice.2015.19.10.2465
  5. M. H. S. Gilani, I. Sarrafi, and M. Abbaspour, "An adaptive CSMA/TDMA hybrid MAC for energy and throughput improvement of wireless sensor networks," Ad Hoc Networks, vol. 11, no. 4, pp. 1297-1304, June 2013. https://doi.org/10.1016/j.adhoc.2011.01.005
  6. J. W. Chong, C. H. Cho, H. Y. Hwang, and D. K. Sung, "An adaptive WLAN interference mitigation scheme for ZigBee sensor networks," International Journal of Distributed Sensor Networks, vol. 11, no. 8, Article ID 851289, Aug. 2015.
  7. M. Al-Jemeli and F. A. Hussin, "An energy efficient cross-layer network operation model for IEEE 802.15.4- based mobile wireless sensor networks," IEEE Sensors Journal, vol. 15, no. 2, pp. 684-692, Feb. 2015. https://doi.org/10.1109/JSEN.2014.2352041
  8. E. Leao, C. Montez, R. Moraes, P. Portugal, and F. Vasques, "Superframe duration allocation schemes to improve the throughput of cluster-tree wireless sensor networks," Sensors, vol. 17, no. 2, pp. 1-35, Jan. 2017. https://doi.org/10.1109/JSEN.2017.2761499
  9. H. A. A. Al-Kashoash, M. Hafeez, and A. H. Kemp, "Congestion control for 6LoWPAN networks: A game theoretic framework," IEEE Internet of Things Journal, vol. 4, no. 3, pp. 760-771, June 2017. https://doi.org/10.1109/JIOT.2017.2666269
  10. G. Bianchi and I. Tinnirello, "Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network," in Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies, pp. 844-852, Mar. 2003.
  11. T. Kim, J. Lim, and D. Hong, "Performance comparison in estimating the number of competing terminals in IEEE 802.11 networks (Kalman vs. H infinity filter)," The Journal of Korean Institute of Communications and Information Sciences, vol. 37, no. 11, pp. 1001-1011, Nov. 2012.
  12. X. Zhao, W. Zhang, W. Niu, Y. Zhang, and L. Zhao, "Power and bandwidth efficiency of IEEE 802.15.4 wireless sensor networks," in Proceedings of the 7th International Conference on Ubiquitous Intelligence and Computing, pp. 243-251, Oct. 2010.
  13. J. W. Chong, H. Y. Hwang, D. K. Sung, and Y. Nam, "A comprehensive analysis of association process for IEEE 802.15.4 wireless networks," International Journal of Ad Hoc and Ubiquitous Computing, vol. 16, no. 1, pp. 70-77, June 2014. https://doi.org/10.1504/IJAHUC.2014.062491
  14. T. R. Park, T. H. Kim, J. Y. Choi, S. Choi, and W. H. Kwon, "Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA/CA," Electronics Letters, vol. 41, no. 18, pp. 1017-1019, Sept. 2005. https://doi.org/10.1049/el:20051662