참고문헌
- H. P. Boas, Counterexample to the Lu Qi-Keng conjecture, Proc. Amer. Math. Soc. 97 (1986), no. 2, 374-375. https://doi.org/10.1090/S0002-9939-1986-0835902-8
- F. Colombo, J. O. Gonzalez-Cervantes, and I. Sabadini, Further properties of the Bergman spaces of slice regular functions, Adv. Geom. 15 (2015), no. 4, 469-484.
- F. Colombo, I. Sabadini, and D. C. Struppa, Slice monogenic functions, Israel J. Math. 171 (2009), 385-403. https://doi.org/10.1007/s11856-009-0055-4
- F. Colombo, J. O. Gonzalez-Cervantes, M. E. Luna-Elizarraras, I. Sabadini, and M. Shapiro, On two approaches to the Bergman theory for slice regular functions, in Advances in hypercomplex analysis, 39-54, Springer INdAM Ser., 1, Springer, Milan, 2013.
- F. Colombo, J. O. Gonzalez-Cervantes, and I. Sabadini, The Bergman-Sce transform for slice monogenic functions, Math. Methods Appl. Sci. 34 (2011), no. 15, 1896-1909. https://doi.org/10.1002/mma.1489
- F. Colombo, J. O. Gonzalez-Cervantes, and I. Sabadini, On slice biregular functions and isomorphisms of Bergman spaces, Complex Var. Elliptic Equ. 57 (2012), no. 7-8, 825-839. https://doi.org/10.1080/17476933.2011.627441
- F. Colombo, J. O. Gonzalez-Cervantes, and I. Sabadini, The C-property for slice regular functions and applications to the Bergman space, Complex Var. Elliptic Equ. 58 (2013), no. 10, 1355-1372. https://doi.org/10.1080/17476933.2012.674521
- F. Colombo, I. Sabadini, and D. C. Struppa, Noncommutative Functional Calculus, Progress in Mathematics, 289, Birkhauser/Springer Basel AG, Basel, 2011.
- P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.
- S. G. Gal and I. Sabadini, Approximation by polynomials on quaternionic compact sets, Math. Methods Appl. Sci. 38 (2015), no. 14, 3063-3074. https://doi.org/10.1002/mma.3281
- G. Gentili, C. Stoppato, and D. C. Struppa, Regular Functions of a Quaternionic Variable, Springer Monographs in Mathematics, Springer, Heidelberg, 2013.
- G. Gentili and D. C. Struppa, A new approach to Cullen-regular functions of a quaternionic variable, C. R. Math. Acad. Sci. Paris 342 (2006), no. 10, 741-744. https://doi.org/10.1016/j.crma.2006.03.015
- G. Gentili and D. C. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math. 216 (2007), no. 1, 279-301. https://doi.org/10.1016/j.aim.2007.05.010
- S. G. Krantz, Geometric Analysis of the Bergman Kernel and Metric, Graduate Texts in Mathematics, 268, Springer, New York, 2013.
- Q. Lu, On Kahler manifolds with constant curvature, Chinese Math. Acta 8 (1966), 283-298.
- J.-D. Park, On the zeros of the slice Bergman kernels for the upper half space and the unit ball on quaternions and Clifford algebras, Complex Anal. Oper. Theory 11 (2017), no. 2, 329-344. https://doi.org/10.1007/s11785-016-0550-7
- G. Ren, X. Wang, and Z. Xu, Slice regular functions on regular quadratic cones of real alternative algebras, in Modern trends in hypercomplex analysis, 227-245, Trends Math, Birkhauser/Springer, Cham, 2016.
- G. Ren and Z. Xu, Slice Lebesgue measure of quaternions, Adv. Appl. Clifford Algebr. 26 (2016), no. 1, 399-416. https://doi.org/10.1007/s00006-015-0578-1
- R. F. Rinehart, Elements of a theory of intrinsic functions on algebras, Duke Math. J 27 (1960), 1-19. https://doi.org/10.1215/S0012-7094-60-02701-0