DOI QR코드

DOI QR Code

Dosimetric Comparison of 6 MV Flattening Filter Free and 6 MV Stereotactic Radiosurgery Beam Using 4 mm Conical Collimator for Trigeminal Neuralgia Radiosurgery

  • Mhatre, Vaibhav R (Department of Radiation Oncology and Neurosurgery, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute) ;
  • Chadha, Pranav (Department of Radiation Oncology and Neurosurgery, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute) ;
  • Kumar, Abhaya P (Department of Radiation Oncology and Neurosurgery, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute) ;
  • Talapatra, Kaustav (Department of Radiation Oncology and Neurosurgery, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute)
  • Received : 2018.06.14
  • Accepted : 2018.08.07
  • Published : 2018.09.30

Abstract

Background: The purpose of our study was to compare the dosimetric advantages of Flattening filter free (FFF) beams for trigeminal neuralgia patients using 4 mm conical collimators over previously treated patients with 6 MV SRS beam. Materials and Methods: A retrospective study was conducted for 5 TN patients who had been previously treated at our institution using frame-based, LINAC-based stereotactic radiosurgery (SRS) on Novalis Tx using 6 MV SRS beam were replanned on 6X FFF beams on Edge Linear accelerator with same beam angles and dose constraints using 4 mm conical collimator. The total number of monitor units along with the beam on time was compared for both Edge and Novalis Tx by redelivering the plans in QA mode of LINAC to compare the delivery efficiency. Plan quality was evaluated by homogeneity index (HI) and Paddick gradient index (GI) for each plan. We also analyzed the doses to brainstem and organ at risks (OARs). Results and Discussion: A 28% beam-on time reduction was achieved using 6X FFF when compared with 6X SRS beam of Novalis Tx. A sharp dose fall off with gradient index value of $3.4{\pm}0.27$ for 4 mm Varian conical collimator while $4.17{\pm}0.20$ with BrainLab cone. Among the 5 patients treated with a 4 mm cone, average maximum brainstem dose was 10.24 Gy for Edge using 6X FFF and 14.28 Gy for Novalis Tx using 6X SRS beam. Conclusion: The use of FFF beams improves delivery efficiency and conical collimator reduces dose to OAR's for TN radiosurgery. Further investigation is warranted with larger sample patient data.

Keywords

References

  1. Fraioli B, Esposito V, Guidetti B, Cruccu G, Manfredi M. Treatment of trigeminal neuralgia by thermocoagulation, glycerolization, and percutaneous compression of the gasserian ganglion and/or retrogasserian rootlets: long‐term results and therapeutic protocol. Neurosurgery.1989;24(2):239-245. https://doi.org/10.1227/00006123-198902000-00014
  2. Miller JP, Acar F, Burchiel KJ. Classification of trigeminal neuralgia: Clinical, therapeutic, and prognostic implications in a series of 144 patients undergoing microvascular decompression. J. Neurosurg. 2009;111(6):1231-1234. https://doi.org/10.3171/2008.6.17604
  3. Barker FG, Jannetta PJ, Bissonette DJ, Larkins MV, Jho HD. The long-term outcome of microvascular decompression for trigeminal neuralgia. N. Engl. J. Med. 1996;334(17):1077-1083. https://doi.org/10.1056/NEJM199604253341701
  4. Broggi G, Ferroli P, Franzini A, Servello D, Dones I. Microvascular decompression for trigeminal neuralgia: comments on a series of 250 cases, including 10 patients with multiple sclerosis. J. Neurol. Neurosur. Ps. 2000;68(1):59-64. https://doi.org/10.1136/jnnp.68.1.59
  5. Adler JR Jr, Bower R, Gupta G, Lim M, Efron A, Gibbs IC, Chang SD, Soltys SG. Nonisocentric radiosurgical rhizotomy for trigeminal neuralgia. Neurosurgery. 2009;64(2):A84-A90. https://doi.org/10.1227/01.NEU.0000341631.49154.62
  6. Flickinger JC, Pollock BE, Kondziolka D, Phuong LK, Foote RL, Stafford SL, Lunsford LD. Does increased nerve length within the treatment volume improve trigeminal neuralgia radiosurgery? A prospective double‐blind, randomized study. Int. J. Radiat. Oncol. Biol. Phys. 2001;51(2):449-454. https://doi.org/10.1016/S0360-3016(01)01606-6
  7. Lekshell L. Sterotaxic rsdiosurgery in trigeminal neuralgia. Acta. Chir. Scand. 1971;137:311-314.
  8. Gronseth G, Cruccu G, Alksne J, Argoff C, Brainin M, Burchiel K, Nurmikko T, Zakrzewska JM. Practice parameter: The diagnostic evaluation and treatment of trigeminal neuralgia (an evidencebased review): Report of the Quality Standards Subcommittee of the American Academy of Neurology and the European Federation of Neurological Societies. Neurology. 2008;71:1183-1190. https://doi.org/10.1212/01.wnl.0000326598.83183.04
  9. Cheuk AV, Chin LS, Petit JH, Herman JM, Fang HB, Regine WF. Gamma knife surgery for trigeminal neuralgia: outcome, imaging, and brainstem correlates. Int. J. Radiat. Oncol. Biol. Phys. 2004;60(2):537-541. https://doi.org/10.1016/j.ijrobp.2004.04.020
  10. Kondziolka D, Zorro O, Lobato-Polo J, Hideyuki K, Flannery TJ, Flickinger JC, Lunsford D. Gamma Knife stereotactic radiosurgery for idiopathic trigeminal neuralgia. J. Neurosurg. 2010;112: 758-765.
  11. Gerbi BJ, Higgins PD, Cho KH, Hall WA. LINAC‐based stereotactic radiosurgery for treatment of trigeminal neuralgia. J. Appl. Clin. Med. Phys. 2004;5(3):80-90. https://doi.org/10.1120/jacmp.v5i3.1997
  12. Winston KR, Lutz W. Linear accelerator as neurosurgical tool for stereotactic radiosurgery. Neurosurgery. 1988;22(3):454-464. https://doi.org/10.1227/00006123-198803000-00002
  13. Rahimian J, Chen JC, Rao AA, Girvigian MR, Miller MJ, Greathouse HE. Geometrical accuracy of the Novalis stereotactic radiosurgery system for trigeminal neuralgia. J. Neurosurg. 2004; 101:351-355.
  14. Grimm J, et al. A quality assurance method with submillimeter accuracy for stereotactic linear accelerators. J. Appl. Clin. Med. Phys. 2011;12(1):182-198. https://doi.org/10.1120/jacmp.v12i1.3365
  15. Kim J, et al. Clinical commissioning and use of the Novalis Tx linear accelerator for SRS and SBRT. J. Appl. Clin. Med. Phys. 2012;13(3):124-151.
  16. Solberg TD, Siddon RL, Kavanagh B. Historical development of stereotactic ablative radiotherapy. In: Stereotactic Body Radiation Therapy. 1st Ed. Berlin, Germany. Springer‐Verlag. 2012:9-35.
  17. Goss BW, Frighetto L, DeSalles AA, Smith Z, Solberg T, Selch M. Linear accelerator radiosurgery using 90 gray for essential trigeminal neuralgia: results and dose volume histogram analysis. Neurosurgery. 2003;53(4):823-830. https://doi.org/10.1227/01.NEU.0000083550.03928.D8
  18. Richards GM, Bradley KA, Tome WA, Bentzen SM, Resnick DK, Mehta MP. Linear accelerator radiosurgery for trigeminal neuralgia. Neurosurgery. 2005;57(6):1193-1200. https://doi.org/10.1227/01.NEU.0000186015.01179.70
  19. Zahra H, Teh BS, Paulino AC, Daniel Y, Trask T, Baskin D, Butler EB. Stereotactic radiosurgery for trigeminal neuralgia utilizing the BrainLAB Novalis system. Technol. Cancer Res. Treat. 2009; 8(6):407-412. https://doi.org/10.1177/153303460900800602
  20. Smith ZA, Gorgulho AA, Bezrukiy N, McArthure D, Agazaryan N, Selch MT, De Salles AA. Dedicated linear accelerator radiosurgery for trigeminal neuralgia: a single‐center experience in 179 patients with varied dose prescriptions and treatment plans. Int. J. Radiat. Oncol. Biol. Phys. 2011;81(1):225-231. https://doi.org/10.1016/j.ijrobp.2010.05.058
  21. Pusztaszeri M, Villemure JG, Regli L, Do HP, Pica A. Radiosurgery for trigeminal neuralgia using a linear accelerator with BrainLab system: report on initial experience in Lausanne, Switzerland. Swiss Med. Wkly. 2007;137:682-686.
  22. Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J. Neurosurg. 2006;123: 194-201.
  23. Pokhrel D, et al. LINAC‐based stereotactic radiosurgery (SRS) in the treatment of refractory trigeminal neuralgia: detailed description of SRS procedure and reported clinical outcomes. J. Appl. Clin. Med. Phys. 2017;18(2):136-143. https://doi.org/10.1002/acm2.12057
  24. Kerolus MG, et al. Truebeam radiosurgery for the treatment of trigeminal neuralgia: preliminary results at a single institution . Cureus. 2017;9(6):e1362.
  25. Tang CT, Chang SD, Tseng KY, Liu MY, Ju DT. CyberKnife stereotactic radiosurgical rhizotomy for refractory trigeminal neuralgia. J. Clin. Neurosci. 2011;18(11):1449-1453. https://doi.org/10.1016/j.jocn.2011.03.012
  26. Lazzara BM, Ortiz O, Bordia R, Witten MR, Haas JA, Katz AJ, Brown JA. Cyberknife radiosurgery in treating trigeminal neuralgia. J. Neurointerv. Surg. 2011;5:81-85.
  27. Karam SD, et al. Refractory trigeminal neuralgia treatment outcomes following CyberKnife radiosurgery. Radiat. Oncol. 2014; 9:257. https://doi.org/10.1186/s13014-014-0257-8
  28. Ma L, Kwok Y, Chin LS, Regine WF. Comparative analyses of LINAC and Gamma Knife radiosurgery for trigeminal neuralgia treatments. Phys. Med. Biol. 2005;50(22):5217. https://doi.org/10.1088/0031-9155/50/22/001
  29. Daniel Gasic, et al. A treatment planning and delivery comparison of volumetric modulated arc therapy with or without flattening filter for gliomas, brain metastases, prostate, head/neck and early stage lung cancer. Acta Oncol. 2014;53(8):1005-1011. https://doi.org/10.3109/0284186X.2014.925578
  30. Glide-Hurst C, et al. Commissioning of the Varian TrueBeam linear accelerator: a multi-institutional study. Med. Phys. 2013; 40(3):031719. https://doi.org/10.1118/1.4790563
  31. Zhuang M, Zhang T, Chen Z, Lin Z, Li D, Peng X, Qiu Q, Wu R. Volumetric modulation arc radiotherapy with flattening filterfree beams compared with conventional beams for nasopharyngeal carcinoma: a feasibility study. Chin. J. Cancer. 2013; 32(7):397-402. https://doi.org/10.5732/cjc.012.10182
  32. Kragl G, et al. Flattening filter free beams in SBRT and IMRT: Dosimetric assessment of peripheral doses. Z. Med. Phys. 2011; 21(2):91-101. https://doi.org/10.1016/j.zemedi.2010.07.003
  33. Cashmore J, Ramtohul M, Ford D. Lowering whole-body radiation doses in pediatric intensity-modulated radiotherapy through the use of unflattened photon beams. Int. J. Radiat. Oncol. Biol. Phys. 2011;80(4):1220-1227. https://doi.org/10.1016/j.ijrobp.2010.10.002
  34. Prendergast BM, Popple RA, Clark GM, Spencer SA, Guthrie B, Markert J, Fiveash JB. Improved clinical efficiency in CNS stereotactic radiosurgery (SRS) using a flattening filter free (FFF) linear accelerator. Int. J. Radiat. Oncol. Biol. Phys. 2011;81(2): S903-S904.
  35. Hsu SM, Lai YC, Jeng CC, Tseng CY. Dosimetric comparison of different treatment modalities for stereotactic radiotherapy. Radiat. Oncol. 2017;12:155. https://doi.org/10.1186/s13014-017-0890-0
  36. Xue J, Goldman HW, Grimm J, LaCouture T, Chen Y, Hughes L, Yorke E. Dose-volume effects on brainstem dose tolerance in radiosurgery. J. Neurosurg. 2012;117:189-196.
  37. Gorgulho AA, De Salles AAF. Impact of radiosurgery on the surgical treatment of trigeminal neuralgia. Surg. Neurol. 2006;66(4): 350-356. https://doi.org/10.1016/j.surneu.2006.03.046
  38. Maesawa S, Salame C, Flickinger JC, Pirris S, Kondziolka D, Lundsford LD. Clinical outcomes after stereotactic radiosurgery for idiopathic trigeminal neuralgia. J. Neurosurg. 2001;94(1):14-20.
  39. Pollock BE, Phuong LK, Gorman DA, Foote RL, Stafford SL. Stereotactic radiosurgery for idiopathic trigeminal neuralgia. J. Neurosurg. 2002;97(2):347-353. https://doi.org/10.3171/jns.2002.97.2.0347
  40. Leonor VL, Marisa LG, Maria MR, Victor MG. Linear accelerator stereotactic radiosurgery for trigeminal neuralgia. Pain Physician 2015;18:15-27.