DOI QR코드

DOI QR Code

Genetic Diversity and Relationship of Ogye Population in Korea Using 25 Microsatellite Markers

MS 마커를 활용한 지역별 오계 유전자원의 다양성 및 유연관계 분석

  • Roh, Hee-Jong (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Kim, Kwan-Woo (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Lee, Jin-Wook (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Jeon, Da-Yeon (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Kim, Seung-Chang (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Jeon, Ik-Soo (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Ko, Yeoung-Gyu (Animal Genetic Resources Center, National Institute of Animal Science, RDA) ;
  • Lee, Jun-Heon (Division of Animal and Dairy Science, Chungnam National University) ;
  • Kim, Sung-Hee (Chungbuk Institute of Livestock and Veterinary Research) ;
  • Baek, Jun-Jong (Chungnam Institute of Livestock Experiment Research) ;
  • Oh, Dong-Yep (Gyeongbuk Livestock Research Institute) ;
  • Han, Jae-Yong (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Seung-Sook (Jisan Farm) ;
  • Cho, Chang-Yeon (Animal Genetic Resources Center, National Institute of Animal Science, RDA)
  • 노희종 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 김관우 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 이진욱 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 전다연 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 김승창 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 전익수 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 고응규 (농촌진흥청 국립축산과학원 가축유전자원센터) ;
  • 이준헌 (충남대학교 동물자원과학부) ;
  • 김성희 (충북 동물위생시험소 축산시험장) ;
  • 백준종 (충남 축산기술연구소) ;
  • 오동엽 (경북 축산기술연구소) ;
  • 한재용 (서울대학교 농생명공학부) ;
  • 이승숙 (지산농원) ;
  • 조창연 (농촌진흥청 국립축산과학원 가축유전자원센터)
  • Received : 2018.08.13
  • Accepted : 2018.09.13
  • Published : 2018.09.30

Abstract

The aim of this study was to evaluate the genetic diversity and relationships of Ogye populations in Korea. A total of 243 genomic DNA samples from 6 Ogye population (Yeonsan Ogye; YSO, Animal Genetic Resources Research Center Ogye; ARO, Chungbuk Ogye; CBO, Chungnam Ogye; CNO, Gyeongbuk Ogye; GBO, Seoul National University Ogye; SUO) and 3 introduced chicken breeds (Rhode Island Red; RIR, White Leghorn; LG, Cornish; CN) were used. Sizes of 25 microsatellite markers were decided using GeneMapper Software(v 5.0) after analyzing ABI 3130XL. A total of 153 alleles were observed and the range was 2 to 10 per each locus. The mean of expected and observed heterozygosity and PIC (Polymorphism Information Content) value was 0.53, 0.50, 0.46 respectively. The lowest genetic distance (0.073) was observed between YSO and SUO, and the highest distance (0.937) between the RIR and CBO. The results of clustering analysis suggested 3 clusters (${\Delta}K=7.96$). Excluding GBO population, 5 Ogye populations (YSO, ARO, CBO, CNO, SUO) were grouped in same cluster with high genetic uniformity (0.990, 0.979, 0.989, 0.994, 0.985 respectively). But GBO population was grouped in cluster 1 with low genetic uniformity (0.340). The results of this study can be use to basic data for the genetic evaluation and management of Ogye populations in Korea.

본 연구는 연산오계(천연기념물 제265호)와 이를 기원으로 하는 5개 지역별 오계 집단의 유전적 특성 및 차별성을 분석하기 위해 25개의 초위성체(MS) 마커를 이용하여 총 9개 집단 243수를 대상으로 유전자형을 분석하였다. 마커별 다형성 분석 결과, 총 153개의 대립유전자가 확인되었으며, $H_{\exp}$와 PIC의 경우 MCW0145에서 각각 0.640, 0.570으로 가장 높았고, $H_{obs}$는 MCW0252에서 0.607로 가장 높은 값을 나타내었다. 반면, LEI0166에서 $H_{\exp}$, $H_{obs}$, PIC가 각각 0.248, 0.204, 0.202로 가장 낮았다. 집단간 유전거리 분석 결과로는 9개 집단중 YSO 집단과 SUO 집단이 가장 가까운(0.073) 반면, LG 집단과 CBO 집단 사이에서 가장 먼(0.937) 것으로 확인되었다. 집단의 실제 구조를 확인하기 위한 집단별 균일도를 분석한 결과, 공시된 9개의 집단은 3개의 집단으로 구분했을 때 최적의 K값(7.96)을 얻을 수 있었으며, 5개의 오계 집단(YSO, ARO, CBO, CNO, SUO) 및 LG 집단과 CN RIR 집단은 각각 1, 2, 3번 군집에 분포하고 있는 것으로 나타났다. 한편, GBO 집단의 경우 1번과 3번 클러스터에 걸쳐서 분포하고 있는 것으로 보아 사육과정에서 타집단과의 교잡이 일어났을 것으로 추정된다. 이러한 결과를 통해 추후 오계 유전자원에 대한 국가 수준의 유전적 특성평가 및 관리의 기초 자료로 유용하게 활용될 것으로 기대된다.

Keywords

References

  1. Barker JSF, Tan SG, Selvaraj, OS, Mukherjee TK 1997 Genetic variation within and relationships among populations of Asian water buffalo (Bubalus bubalis). Anim Sci 28(1):1-13.
  2. Earl DA, Von-Holdt BM 2012 Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4(2):359-361. https://doi.org/10.1007/s12686-011-9548-7
  3. Felsenstein J 2010 PHYLIP (Phylogeny Inference Package) Version 3.69. University of Washington, Seattle, USA.
  4. Jakobsson M, Rosengerg NA, 2007 CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801-1806. https://doi.org/10.1093/bioinformatics/btm233
  5. Kong HS, Oh JD, Lee JH, Jo KJ, Sang BD, Choi CH, Kim SD, Lee SJ, Yeon SH, Jeon GJ 2006 Genetic variation and relationships of Korean native chickens and foreign breeds using 15 microsatellite markers. Asian Australas J Anim Sci 19(11):1546-1550. https://doi.org/10.5713/ajas.2006.1546
  6. Lee HH 2010, Encyclopedia of the Chicken. Hyunchook, Seoul, Korea.
  7. Lee PY, Yeon SH, Kim JH, Ko YG, Son JK, Lee HH, Cho CY 2011 Genetic composition of Korean native chicken populations-National scale molecular genetic evaluation based on microsatellite markers. Korean J Poult Sci 38(2):81-87. https://doi.org/10.5536/KJPS.2011.38.2.081
  8. Li K, Fan B, Zhao S, Peng Z, Li K, Chen Y, Moran C 2000 Analysis of diversity and genetic relationships between four Chinese indigenous pig breeds and one Australian commercial pig breed. Anim Sci 31(5):322-325.
  9. Martin-Burriel I, Garcia-Muro E, Zaragoza P 1999 Genetic diversity analysis of six Spanish native cattle breeds using microsatellites. Anim Sci 30(3):177-182.
  10. Nei M 1978 Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3):583-590.
  11. Oh JD, Kang BS, Kim HK, Park MN, Chae EJ, Seo OS, Lee HK, Jeon GJ, Kong HS 2008 Genetic relationship between populations and analysis of genetic structure in the Korean native chicken and the Endemic chicken breeds. Korean J Poult Sci 35(4):361-366. https://doi.org/10.5536/KJPS.2009.35.4.361
  12. Park S 2000 Microsatellite Toolkit for MS Excel 97 or 2000. Personnel Communication.
  13. Peelman LJ, Mortiaux F, Van Zeveren A, Dansercoer A, Mommens G, Coopman F, Bouquet Y, Burny A, Renaville R, Portetelle D 1998 Evaluation of the genetic variability of 23 bovine microsatellite markers in four Belgian cattle breeds. Anim Sci 29(3):161-167.
  14. Pritchard JK, Stephens M, Donnelly P 2000 Inference of population structure using multilocus genotype data. Genetics. 155(2):945-959.
  15. Rosenberg NA 2004 DISTRUCT: A program for the graphical display of population structure. Mol Ecol Notes 4(1):137-138. https://doi.org/10.1046/j.1471-8286.2003.00566.x
  16. Seo DW, Hoque MR, Choi NR, Sultana H, Park HB, Heo KN, Kang BS, Lim HT, Lee SH, Jo C 2013 Discrimination of Korean native chicken lines using fifteen selected microsatellite markers. Asian Australas J Anim Sci 26(3):316-322. https://doi.org/10.5713/ajas.2012.12469
  17. Seo JH, Oh JD, Lee JH, Seo DW, Kong HS 2015 Studies on genetic diversity and phylogenetic relationships of Korean Native Chicken using the microsatellite marker. Korean J Poult Sci 42(1):15-26. https://doi.org/10.5536/KJPS.2014.42.1.15
  18. Suh SW, Sharma A, Lee SH, Cho CY, Kim JH, Choi SB, Kim H, Seong HH, Yeon SH, Kim DH 2014 Genetic diversity and relationships of Korean chicken breeds based on 30 microsatellite markers. Asian Australas J Anim Sci 27(10):1399-1405. https://doi.org/10.5713/ajas.2014.14016