DOI QR코드

DOI QR Code

Do Solar Cycles Share Spectral Properties with Tropical Cyclones that Occur in the Western North Pacific Ocean?

  • Kim, Ki-Beom (Department Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Kim, Jung-Hee (Department Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Chang, Heon-Young (Department Astronomy and Atmospheric Sciences, Kyungpook National University)
  • Received : 2018.08.18
  • Accepted : 2018.08.31
  • Published : 2018.09.30

Abstract

Understanding solar influences on extreme weather is important. Insight into the causes of extreme weather events, including the solar-terrestrial connection, would allow better preparation for these events and help minimize the damage caused by disasters that threaten the human population. In this study, we examined category three, four, and five tropical cyclones that occurred in the western North Pacific Ocean from 1977 to 2016. We compared long-term trends in the positions of tropical cyclone occurrence and development with variations of the observed sunspot area, the solar North-South asymmetry, and the southern oscillation index (SOI). We found that tropical cyclones formed, had their maximum intensity, and terminated more northward in latitude and more westward in longitude over the period analyzed; they also became stronger during that period. It was found that tropical cyclones cannot be correlated or anti-correlated with the solar cycle. No evidence showing that properties (including positions of occurrence/development and other characteristics) of tropical cyclones are modulated by solar activity was found, at least not in terms of a spectral analysis using the wavelet transform method.

Keywords

References

  1. Bazilevskaya GA, Usoskin IG, Fluckiger EO, Harrison RG, Desorgher L, et al., Cosmic ray induced ion production in the atmosphere, Space Sci. Rev. 137, 149-173 (2008). https://doi.org/10.1007/s11214-008-9339-y
  2. Bender FAM, Ekman AML, Rodhe H, Response to the eruption of Mount Pinatubo in relation to climate sensitivity in the CMIP3 models, Clim. Dyn. 35, 875-886 (2010). https://doi.org/10.1007/s00382-010-0777-3
  3. Bettolli ML, Penalba OC, Vargas WM, Synoptic weather types in the south of South America and their relationship to daily rainfall in the core production region of crops in Argentina, Aust. Meteorol. Oceanogr. J. 60, 37-48 (2010). https://doi.org/10.22499/2.6001.004
  4. Burns AG, Solomon SC, Wang W, Killeen TL, The ionospheric and thermospheric response to CMEs: challenges and successes, J. Atmos. Sol.-Terr. Phys. 69, 77-85 (2007). https://doi.org/10.1016/j.jastp.2006.06.010
  5. Burns AG, Zeng Z, Wang W, Lei J, Solomon SC, et al., Behavior of the $F_2$ peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data, J. Geophys. Res. 113, A12305 (2008). https://doi.org/10.1029/2008JA013308
  6. Camargo SJ, Sobel AH, Western North Pacific tropical cyclone intensity and ENSO, J. Clim. 18, 2996-3006 (2005). https://doi.org/10.1175/JCLI3457.1
  7. Cho IH, Chang HY, Long term variability of the sun and climate change, J. Astron. Space Sci. 25, 395-404 (2008). https://doi.org/10.5140/JASS.2008.25.4.395
  8. Cho IH, Kwak YS, Chang HY, Cho KS, Kim YH, et al., The global temperature anomaly and solar North-South asymmetry, Asia-Pac. J. Atmos. Sci. 48, 253-257 (2012). https://doi.org/10.1007/s13143-012-0025-3
  9. Emanuel K, Increasing destructiveness of tropical cyclones over the past 30 years, Nature 436, 686-688 (2005). https://doi.org/10.1038/nature03906
  10. Gleixner S, Keenlyside N, Hodges KI, Tseng WL, Bengtsson L, An inter-hemispheric comparison of the tropical storm response to global warming, Clim. Dyn. 42, 2147-2157 (2014). https://doi.org/10.1007/s00382-013-1914-6
  11. Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, et al., Solar influences on climate, Rev. Geophys. 48, RG4001 (2010). https://doi.org/10.1029/2009RG000282
  12. Gray LJ, Scaife AA, Mitchell DM, Osprey S, Ineson S, et al., A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns, J. Geophys. Res. 118, 13405-13420 (2013). https://doi.org/10.1002/2013JD020062
  13. Gray LJ, Ball W, Misios S, Solar influences on climate over the Atlantic/European sector, AIP Conf. Proc. 1810, 020002 (2017). https://doi.org/10.1063/1.4975498
  14. Gualdi S, Scoccimarro E, Navarra A, Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model, J. Clim. 21, 5204-5228 (2008). https://doi.org/10.1175/2008JCLI1921.1
  15. Haam E, Tung KK, Statistics of solar cycle-La Nina connection: correlation of two autocorrelated time series, J. Atmos. Sci. 69, 2934-2939 (2012). https://doi.org/10.1175/JAS-D-12-0101.1
  16. Haigh JD, The sun and the earth's climate, Living Rev. Sol. Phys. 4, 2 (2007). https://doi.org/10.12942/lrsp-2007-2
  17. Hodell DA, Charles CD, Sierro FJ, Late Pleistocene evolution of the ocean's carbonate system, Earth Planet. Sci. Lett. 192, 109-124 (2001). https://doi.org/10.1016/S0012-821X(01)00430-7
  18. Hwang C, Peng MF, Ning J, Luo J, Sui CH, Lake level variations in China from TOPEX/Poseidon altimetry: data quality assessment and links to precipitation and ENSO, Geophys. J. Int. 161, 1-11 (2005). https://doi.org/10.1111/j.1365-246X.2005.02518.x
  19. Kavlakov SP, Global cosmic ray intensity changes, solar activity variations and geomagnetic disturbances as North Atlantic hurricane precursors, Int. J. Mod. Phys. A 20, 6699-6701 (2005). https://doi.org/10.1142/S0217751X0502985X
  20. Kim JH, Kim KB, Chang HY, Solar influence on tropical cyclone in western North Pacific Ocean, J. Astron. Space Sci. 34, 257-270 (2017). https://doi.org/10.5140/JASS.2017.34.4.257
  21. Kniveton DR, Tinsley BA, Burns GB, Bering EA, Troshichev OA, Variations in global cloud cover and the fair-weather vertical electric field, J. Atmos. Sol.-Terr. Phys. 70, 1633-1642 (2008). https://doi.org/10.1016/j.jastp.2008.07.001
  22. Kossin JP, A global slowdown of tropical-cyclone translation speed, Nature 558, 104-107 (2018). https://doi.org/10.1038/s41586-018-0158-3
  23. Kossin JP, Emanuel KA, Vecchi GA, The poleward migration of the location of tropical cyclone maximum intensity, Nature 509, 349-352 (2014). https://doi.org/10.1038/nature13278
  24. Kossin JP, Emanuel KA, Camargo SJ, Past and projected changes in western North Pacific tropical cyclone exposure, J. Clim. 29, 5725-5739 (2016). https://doi.org/10.1175/JCLI-D-16-0076.1
  25. Labitzke K, Sunspots, the QBO, and the stratospheric temperature in the north polar region, Geophys. Res. Lett. 14, 535-537 (1987). https://doi.org/10.1029/GL014i005p00535
  26. Labitzke K, van Loon H, Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: the troposphere and stratosphere in the northern hemisphere in winter, J. Atmos. Terr. Phys. 50, 197-206 (1988). https://doi.org/10.1016/0021-9169(88)90068-2
  27. Lam MM, Chisham G, Freeman MP, The interplanetary magnetic field influences mid-latitude surface atmospheric pressure, Environ. Res. Lett. 8, 045001 (2013). https://doi.org/10.1088/1748-9326/8/4/045001
  28. Landscheidt T, Solar Forcing of El Nino and La Nina, Proceedings of the 1st Solar and Space Weather Euroconference, Santa Cruz de Tenerife, Tenerife, Spain, 25-29 Sep 2000.
  29. Lee SS, Yi Y, Pacific equatorial sea surface temperature variation during the 2015 El Nino period observed by advanced very-high-resolution radiometer of NOAA satellites, J. Astron. Space Sci. 35, 105-109 (2018). https://doi.org/10.5140/JASS.2018.35.2.105
  30. Marsh N, Svensmark H, Cosmic rays, clouds, and climate, Space Sci. Rev. 94, 215-230 (2000). https://doi.org/10.1023/A:1026723423896
  31. Mazzarella A, Palumbo F, Rainfall fluctuations over Italy and their association with solar activity, Theor. Appl. Clim. 45, 201-207 (1992). https://doi.org/10.1007/BF00866193
  32. Meehl GA, Arblaster JM, Branstator G, von Loon H, A coupled air-sea response mechanism to solar forcing in the Pacific region, J. Clim. 21, 2883-2897 (2008). https://doi.org/10.1175/2007JCLI1776.1
  33. Meehl GA, Arblaster JM, Matthes K, Sassi F, von Loon H, Amplifying the Pacific climate system response to a small 11-year solar cycle forcing, Science 325, 1114-1118 (2009). https://doi.org/10.1126/science.1172872
  34. Mironova IA, Usoskin IG, Possible effect of extreme solar energetic particle events of September-October 1989 on polar stratospheric aerosols: a case study, Atmos. Chem. Phys. 13, 8543-8550 (2013). https://doi.org/10.5194/acp-13-8543-2013
  35. Mironova IA, Usoskin IG, Possible effect of strong solar energetic particle events on polar stratospheric aerosol: a summary of observational results, Environ. Res. Lett. 9, 015002 (2014). https://doi.org/10.1088/1748-9326/9/1/015002
  36. Mironova IA, Usoskin IG, Kovaltsov GA, Petelina SV, Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence, Atmos. Chem. Phys. 12, 769-778 (2012). https://doi.org/10.5194/acp-12-769-2012
  37. Muraki Y, Application of a coupled harmonic oscillator model to solar activity and El Nino phenomena, J. Astron. Space Sci. 35, 75-81 (2018). https://doi.org/10.5140/JASS.2018.35.2.75
  38. Oey LY, Chou S, Evidence of rising and poleward shift of storm surge in western North Pacific in recent decades, J. Geophys. Res. 121, 5181-5192 (2016). https://doi.org/10.1002/2016JC011777
  39. Park JH, Chang HY, Drought over Seoul and its association with solar cycles, J. Astron. Space Sci. 30, 241-246 (2013). https://doi.org/10.5140/JASS.2013.30.4.241
  40. Park JH, Kim KB, Chang HY, Statistical properties of effective drought index (EDI) for Seoul, Busan, Daegu, Mokpo in South Korea, Asia-Pac. J. Atmos. Sci. 50, 453-458 (2014). https://doi.org/10.1007/s13143-014-0035-4
  41. Pudovkin MI, Influence of solar activity on the lower atmosphere state, Int. J. Geomagn. Aeron. 5, GI2007 (2004).
  42. Pudovkin MI, Veretenenko SV, Pellinen R, Kyro E, Meteorological characteristic changes in the high-latitudinal atmosphere associated with Forbush decreases of the galactic cosmic rays, Adv. Space Res. 20, 1169-1172 (1997). https://doi.org/10.1016/S0273-1177(97)00767-9
  43. Roldugin VC, Tinsley BA, Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations, J. Atmos. Sol.-Terr. Phys. 66, 1143-1149 (2004). https://doi.org/10.1016/j.jastp.2004.05.006
  44. Roy I, Haigh JD, Solar cycle signals in sea level pressure and sea surface temperature, Atmos. Chem. Phys. 10, 3147-3153 (2010). https://doi.org/10.5194/acp-10-3147-2010
  45. Roy I, Haigh JD, Solar cycle signals in the pacific and the issue of timings, J. Atmos. Sci. 69, 1446-1451 (2012). https://doi.org/10.1175/JAS-D-11-0277.1
  46. Sagir S, Karatay S, Atici R, Yesil A, Ozcan O, The relationship between the quasi biennial oscillation and sunspot number, Adv. Space Res. 55, 106-112 (2015). https://doi.org/10.1016/j.asr.2014.09.035
  47. Scafetta N, West BJ, Phenomenological solar contribution to the 1900-2000 global surface warming, Geophys. Res. Lett. 33, L05708 (2006). https://doi.org/10.1029/2005GL025539
  48. Scoccimarro E, Gualdi S, Villarini G, Vecchi GA, Zhao M, et al., Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2, J. Clim. 27, 4642-4654 (2014). https://doi.org/10.1175/JCLI-D-14-00065.1
  49. Shen W, Tuleya RE, Ginis I, A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming, J. Clim. 13, 109-121 (2000). https://doi.org/10.1175/1520-0442(2000)013<0109:ASSOTT>2.0.CO;2
  50. Sobel AH, Camargo SJ, Hall TM, Lee CY, Tippett MK, et al., Human influence on tropical cyclone intensity, Science 353, 242-246 (2016). https://doi.org/10.1126/science.aaf6574
  51. Svensmark H, Friis-Christensen E, Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships, J. Atmos. Sol.-Terr. Phys. 59, 1225-1232 (1997). https://doi.org/10.1016/S1364-6826(97)00001-1
  52. Tinsley BA, Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev. 94, 231-258 (2000). https://doi.org/10.1023/A:1026775408875
  53. Tinsley BA, Deen GW, Apparent tropospheric response to MeV-GeV particle flux variations: a connection via electrofreezing of supercooled water in high-level clouds?, J. Geophys. Res. 96, 22283-22296 (1991). https://doi.org/10.1029/91JD02473
  54. Tinsley BA, Heelis RA, Correlations of atmospheric dynamics with solar activity evidence for a connection via the solar wind, atmospheric electricity, and cloud microphysics, J. Geophys. Res. 98, 10375-10384 (1993). https://doi.org/10.1029/93JD00627
  55. Trenberth K, Uncertainty in hurricanes and global warming, Science 308, 1753-1754 (2005). https://doi.org/10.1126/science.1112551
  56. van Loon H, Meehl GA, The response in the pacific to the sun's decadal peaks and contrasts to cold events in the southern oscillation, J. Atmos. Sol.-Terr. Phys. 70, 1046-1055 (2008). https://doi.org/10.1016/j.jastp.2008.01.009
  57. van Loon H, Meehl GA, Shea DJ, Coupled air-sea response to solar forcing in the pacific region during northern winter, J. Geophys. Res. 112, D02108 (2007). https://doi.org/10.1029/2006JD007378
  58. Veretenenko S, Thejll P, Effects of energetic solar proton events on the cyclone development in the North Atlantic, J. Atmos. Sol.-Terr. Phys. 66, 393-405 (2004). https://doi.org/10.1016/j.jastp.2003.11.005
  59. Webster PJ, Holland GJ, Curry JA, Chang HR, Changes in tropical cyclone number, duration, and intensity in a warming environment, Science 309, 1844-1846 (2005). https://doi.org/10.1126/science.1116448
  60. Wu L, Wang C, Wang B, Westward shift of western North Pacific tropical cyclogenesis, Geophys. Res. Lett. 42, 1537-1542 (2015). https://doi.org/10.1002/2015GL063450
  61. Yamada Y, Oouchi K, Satoh M, Tomita H, Yanase W, Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: Global cloud-systemresolving approach, Geophys. Res. Lett. 37, L07709 (2010). https://doi.org/10.1029/2010GL042518
  62. Yoshimura H, Matsumura T, A two-time-level vertically-conservative semi-Lagrangian semi-implicit double Fourier series AGCM, CAS/JSC WGNE Res. Act. Atmos. Ocean Model. 35, 27-28 (2005).
  63. Zhao M, Held IM, Lin SJ, Vecchi GA, Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM, J. Clim. 22, 6653-6678 (2009). https://doi.org/10.1175/2009JCLI3049.1
  64. Zhou J, Tung KK, Solar cycles in 150 years of global sea surface temperature data, J. Clim. 23, 3234-3248 (2010). https://doi.org/10.1175/2010JCLI3232.1
  65. Zhou L, Tinsley B, Chu H, Xiao Z, Correlations of global sea surface temperatures with the solar wind speed, J. Atmos. Sol.-Terr. Phys. 149, 232-239 (2016). https://doi.org/10.1016/j.jastp.2016.02.010