References
- Bazilevskaya GA, Usoskin IG, Fluckiger EO, Harrison RG, Desorgher L, et al., Cosmic ray induced ion production in the atmosphere, Space Sci. Rev. 137, 149-173 (2008). https://doi.org/10.1007/s11214-008-9339-y
- Bender FAM, Ekman AML, Rodhe H, Response to the eruption of Mount Pinatubo in relation to climate sensitivity in the CMIP3 models, Clim. Dyn. 35, 875-886 (2010). https://doi.org/10.1007/s00382-010-0777-3
- Bettolli ML, Penalba OC, Vargas WM, Synoptic weather types in the south of South America and their relationship to daily rainfall in the core production region of crops in Argentina, Aust. Meteorol. Oceanogr. J. 60, 37-48 (2010). https://doi.org/10.22499/2.6001.004
- Burns AG, Solomon SC, Wang W, Killeen TL, The ionospheric and thermospheric response to CMEs: challenges and successes, J. Atmos. Sol.-Terr. Phys. 69, 77-85 (2007). https://doi.org/10.1016/j.jastp.2006.06.010
-
Burns AG, Zeng Z, Wang W, Lei J, Solomon SC, et al., Behavior of the
$F_2$ peak ionosphere over the South Pacific at dusk during quiet summer conditions from COSMIC data, J. Geophys. Res. 113, A12305 (2008). https://doi.org/10.1029/2008JA013308 - Camargo SJ, Sobel AH, Western North Pacific tropical cyclone intensity and ENSO, J. Clim. 18, 2996-3006 (2005). https://doi.org/10.1175/JCLI3457.1
- Cho IH, Chang HY, Long term variability of the sun and climate change, J. Astron. Space Sci. 25, 395-404 (2008). https://doi.org/10.5140/JASS.2008.25.4.395
- Cho IH, Kwak YS, Chang HY, Cho KS, Kim YH, et al., The global temperature anomaly and solar North-South asymmetry, Asia-Pac. J. Atmos. Sci. 48, 253-257 (2012). https://doi.org/10.1007/s13143-012-0025-3
- Emanuel K, Increasing destructiveness of tropical cyclones over the past 30 years, Nature 436, 686-688 (2005). https://doi.org/10.1038/nature03906
- Gleixner S, Keenlyside N, Hodges KI, Tseng WL, Bengtsson L, An inter-hemispheric comparison of the tropical storm response to global warming, Clim. Dyn. 42, 2147-2157 (2014). https://doi.org/10.1007/s00382-013-1914-6
- Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, et al., Solar influences on climate, Rev. Geophys. 48, RG4001 (2010). https://doi.org/10.1029/2009RG000282
- Gray LJ, Scaife AA, Mitchell DM, Osprey S, Ineson S, et al., A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns, J. Geophys. Res. 118, 13405-13420 (2013). https://doi.org/10.1002/2013JD020062
- Gray LJ, Ball W, Misios S, Solar influences on climate over the Atlantic/European sector, AIP Conf. Proc. 1810, 020002 (2017). https://doi.org/10.1063/1.4975498
- Gualdi S, Scoccimarro E, Navarra A, Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model, J. Clim. 21, 5204-5228 (2008). https://doi.org/10.1175/2008JCLI1921.1
- Haam E, Tung KK, Statistics of solar cycle-La Nina connection: correlation of two autocorrelated time series, J. Atmos. Sci. 69, 2934-2939 (2012). https://doi.org/10.1175/JAS-D-12-0101.1
- Haigh JD, The sun and the earth's climate, Living Rev. Sol. Phys. 4, 2 (2007). https://doi.org/10.12942/lrsp-2007-2
- Hodell DA, Charles CD, Sierro FJ, Late Pleistocene evolution of the ocean's carbonate system, Earth Planet. Sci. Lett. 192, 109-124 (2001). https://doi.org/10.1016/S0012-821X(01)00430-7
- Hwang C, Peng MF, Ning J, Luo J, Sui CH, Lake level variations in China from TOPEX/Poseidon altimetry: data quality assessment and links to precipitation and ENSO, Geophys. J. Int. 161, 1-11 (2005). https://doi.org/10.1111/j.1365-246X.2005.02518.x
- Kavlakov SP, Global cosmic ray intensity changes, solar activity variations and geomagnetic disturbances as North Atlantic hurricane precursors, Int. J. Mod. Phys. A 20, 6699-6701 (2005). https://doi.org/10.1142/S0217751X0502985X
- Kim JH, Kim KB, Chang HY, Solar influence on tropical cyclone in western North Pacific Ocean, J. Astron. Space Sci. 34, 257-270 (2017). https://doi.org/10.5140/JASS.2017.34.4.257
- Kniveton DR, Tinsley BA, Burns GB, Bering EA, Troshichev OA, Variations in global cloud cover and the fair-weather vertical electric field, J. Atmos. Sol.-Terr. Phys. 70, 1633-1642 (2008). https://doi.org/10.1016/j.jastp.2008.07.001
- Kossin JP, A global slowdown of tropical-cyclone translation speed, Nature 558, 104-107 (2018). https://doi.org/10.1038/s41586-018-0158-3
- Kossin JP, Emanuel KA, Vecchi GA, The poleward migration of the location of tropical cyclone maximum intensity, Nature 509, 349-352 (2014). https://doi.org/10.1038/nature13278
- Kossin JP, Emanuel KA, Camargo SJ, Past and projected changes in western North Pacific tropical cyclone exposure, J. Clim. 29, 5725-5739 (2016). https://doi.org/10.1175/JCLI-D-16-0076.1
- Labitzke K, Sunspots, the QBO, and the stratospheric temperature in the north polar region, Geophys. Res. Lett. 14, 535-537 (1987). https://doi.org/10.1029/GL014i005p00535
- Labitzke K, van Loon H, Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: the troposphere and stratosphere in the northern hemisphere in winter, J. Atmos. Terr. Phys. 50, 197-206 (1988). https://doi.org/10.1016/0021-9169(88)90068-2
- Lam MM, Chisham G, Freeman MP, The interplanetary magnetic field influences mid-latitude surface atmospheric pressure, Environ. Res. Lett. 8, 045001 (2013). https://doi.org/10.1088/1748-9326/8/4/045001
- Landscheidt T, Solar Forcing of El Nino and La Nina, Proceedings of the 1st Solar and Space Weather Euroconference, Santa Cruz de Tenerife, Tenerife, Spain, 25-29 Sep 2000.
- Lee SS, Yi Y, Pacific equatorial sea surface temperature variation during the 2015 El Nino period observed by advanced very-high-resolution radiometer of NOAA satellites, J. Astron. Space Sci. 35, 105-109 (2018). https://doi.org/10.5140/JASS.2018.35.2.105
- Marsh N, Svensmark H, Cosmic rays, clouds, and climate, Space Sci. Rev. 94, 215-230 (2000). https://doi.org/10.1023/A:1026723423896
- Mazzarella A, Palumbo F, Rainfall fluctuations over Italy and their association with solar activity, Theor. Appl. Clim. 45, 201-207 (1992). https://doi.org/10.1007/BF00866193
- Meehl GA, Arblaster JM, Branstator G, von Loon H, A coupled air-sea response mechanism to solar forcing in the Pacific region, J. Clim. 21, 2883-2897 (2008). https://doi.org/10.1175/2007JCLI1776.1
- Meehl GA, Arblaster JM, Matthes K, Sassi F, von Loon H, Amplifying the Pacific climate system response to a small 11-year solar cycle forcing, Science 325, 1114-1118 (2009). https://doi.org/10.1126/science.1172872
- Mironova IA, Usoskin IG, Possible effect of extreme solar energetic particle events of September-October 1989 on polar stratospheric aerosols: a case study, Atmos. Chem. Phys. 13, 8543-8550 (2013). https://doi.org/10.5194/acp-13-8543-2013
- Mironova IA, Usoskin IG, Possible effect of strong solar energetic particle events on polar stratospheric aerosol: a summary of observational results, Environ. Res. Lett. 9, 015002 (2014). https://doi.org/10.1088/1748-9326/9/1/015002
- Mironova IA, Usoskin IG, Kovaltsov GA, Petelina SV, Possible effect of extreme solar energetic particle event of 20 January 2005 on polar stratospheric aerosols: direct observational evidence, Atmos. Chem. Phys. 12, 769-778 (2012). https://doi.org/10.5194/acp-12-769-2012
- Muraki Y, Application of a coupled harmonic oscillator model to solar activity and El Nino phenomena, J. Astron. Space Sci. 35, 75-81 (2018). https://doi.org/10.5140/JASS.2018.35.2.75
- Oey LY, Chou S, Evidence of rising and poleward shift of storm surge in western North Pacific in recent decades, J. Geophys. Res. 121, 5181-5192 (2016). https://doi.org/10.1002/2016JC011777
- Park JH, Chang HY, Drought over Seoul and its association with solar cycles, J. Astron. Space Sci. 30, 241-246 (2013). https://doi.org/10.5140/JASS.2013.30.4.241
- Park JH, Kim KB, Chang HY, Statistical properties of effective drought index (EDI) for Seoul, Busan, Daegu, Mokpo in South Korea, Asia-Pac. J. Atmos. Sci. 50, 453-458 (2014). https://doi.org/10.1007/s13143-014-0035-4
- Pudovkin MI, Influence of solar activity on the lower atmosphere state, Int. J. Geomagn. Aeron. 5, GI2007 (2004).
- Pudovkin MI, Veretenenko SV, Pellinen R, Kyro E, Meteorological characteristic changes in the high-latitudinal atmosphere associated with Forbush decreases of the galactic cosmic rays, Adv. Space Res. 20, 1169-1172 (1997). https://doi.org/10.1016/S0273-1177(97)00767-9
- Roldugin VC, Tinsley BA, Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations, J. Atmos. Sol.-Terr. Phys. 66, 1143-1149 (2004). https://doi.org/10.1016/j.jastp.2004.05.006
- Roy I, Haigh JD, Solar cycle signals in sea level pressure and sea surface temperature, Atmos. Chem. Phys. 10, 3147-3153 (2010). https://doi.org/10.5194/acp-10-3147-2010
- Roy I, Haigh JD, Solar cycle signals in the pacific and the issue of timings, J. Atmos. Sci. 69, 1446-1451 (2012). https://doi.org/10.1175/JAS-D-11-0277.1
- Sagir S, Karatay S, Atici R, Yesil A, Ozcan O, The relationship between the quasi biennial oscillation and sunspot number, Adv. Space Res. 55, 106-112 (2015). https://doi.org/10.1016/j.asr.2014.09.035
- Scafetta N, West BJ, Phenomenological solar contribution to the 1900-2000 global surface warming, Geophys. Res. Lett. 33, L05708 (2006). https://doi.org/10.1029/2005GL025539
- Scoccimarro E, Gualdi S, Villarini G, Vecchi GA, Zhao M, et al., Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2, J. Clim. 27, 4642-4654 (2014). https://doi.org/10.1175/JCLI-D-14-00065.1
- Shen W, Tuleya RE, Ginis I, A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming, J. Clim. 13, 109-121 (2000). https://doi.org/10.1175/1520-0442(2000)013<0109:ASSOTT>2.0.CO;2
- Sobel AH, Camargo SJ, Hall TM, Lee CY, Tippett MK, et al., Human influence on tropical cyclone intensity, Science 353, 242-246 (2016). https://doi.org/10.1126/science.aaf6574
- Svensmark H, Friis-Christensen E, Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships, J. Atmos. Sol.-Terr. Phys. 59, 1225-1232 (1997). https://doi.org/10.1016/S1364-6826(97)00001-1
- Tinsley BA, Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev. 94, 231-258 (2000). https://doi.org/10.1023/A:1026775408875
- Tinsley BA, Deen GW, Apparent tropospheric response to MeV-GeV particle flux variations: a connection via electrofreezing of supercooled water in high-level clouds?, J. Geophys. Res. 96, 22283-22296 (1991). https://doi.org/10.1029/91JD02473
- Tinsley BA, Heelis RA, Correlations of atmospheric dynamics with solar activity evidence for a connection via the solar wind, atmospheric electricity, and cloud microphysics, J. Geophys. Res. 98, 10375-10384 (1993). https://doi.org/10.1029/93JD00627
- Trenberth K, Uncertainty in hurricanes and global warming, Science 308, 1753-1754 (2005). https://doi.org/10.1126/science.1112551
- van Loon H, Meehl GA, The response in the pacific to the sun's decadal peaks and contrasts to cold events in the southern oscillation, J. Atmos. Sol.-Terr. Phys. 70, 1046-1055 (2008). https://doi.org/10.1016/j.jastp.2008.01.009
- van Loon H, Meehl GA, Shea DJ, Coupled air-sea response to solar forcing in the pacific region during northern winter, J. Geophys. Res. 112, D02108 (2007). https://doi.org/10.1029/2006JD007378
- Veretenenko S, Thejll P, Effects of energetic solar proton events on the cyclone development in the North Atlantic, J. Atmos. Sol.-Terr. Phys. 66, 393-405 (2004). https://doi.org/10.1016/j.jastp.2003.11.005
- Webster PJ, Holland GJ, Curry JA, Chang HR, Changes in tropical cyclone number, duration, and intensity in a warming environment, Science 309, 1844-1846 (2005). https://doi.org/10.1126/science.1116448
- Wu L, Wang C, Wang B, Westward shift of western North Pacific tropical cyclogenesis, Geophys. Res. Lett. 42, 1537-1542 (2015). https://doi.org/10.1002/2015GL063450
- Yamada Y, Oouchi K, Satoh M, Tomita H, Yanase W, Projection of changes in tropical cyclone activity and cloud height due to greenhouse warming: Global cloud-systemresolving approach, Geophys. Res. Lett. 37, L07709 (2010). https://doi.org/10.1029/2010GL042518
- Yoshimura H, Matsumura T, A two-time-level vertically-conservative semi-Lagrangian semi-implicit double Fourier series AGCM, CAS/JSC WGNE Res. Act. Atmos. Ocean Model. 35, 27-28 (2005).
- Zhao M, Held IM, Lin SJ, Vecchi GA, Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM, J. Clim. 22, 6653-6678 (2009). https://doi.org/10.1175/2009JCLI3049.1
- Zhou J, Tung KK, Solar cycles in 150 years of global sea surface temperature data, J. Clim. 23, 3234-3248 (2010). https://doi.org/10.1175/2010JCLI3232.1
- Zhou L, Tinsley B, Chu H, Xiao Z, Correlations of global sea surface temperatures with the solar wind speed, J. Atmos. Sol.-Terr. Phys. 149, 232-239 (2016). https://doi.org/10.1016/j.jastp.2016.02.010