References
- Adamidis K and Loukas S (1998). A lifetime distribution with decreasing failure rate, Statistics & Probability Letters, 39, 35-42. https://doi.org/10.1016/S0167-7152(98)00012-1
- Ata N and Ozel G (2013). Survival functions for the frailty models based on the discrete compound Poisson process, Journal of Statistical Computation and Simulation, 83, 2105-2116. https://doi.org/10.1080/00949655.2012.679943
- Barral AM (2001). Immunological studies in malignant melanoma: importance of TNF and the thioredoxin system (Doctorate Thesis), Linkoping University, Linkoping.
- Barreto-Souza W, De Morais AL, and Cordeiro GM (2011). The Weibull-geometric distribution, Journal of Statistical Computation and Simulation, 81, 645-657. https://doi.org/10.1080/00949650903436554
- Barriga GDC and Louzada F (2014). The zero-inflated Conway-Maxwell-Poisson distribution: Bayesian inference, regression modeling and influence diagnostic, Statistical Methodology, 21, 23-34. https://doi.org/10.1016/j.stamet.2013.11.003
- Berkson J and Gage RP (1952). Survival curve for cancer patients following treatment, Journal of the American Statistical Association, 47, 501-515. https://doi.org/10.1080/01621459.1952.10501187
- Boag JW (1949). Maximum likelihood estimates of the proportion of patients cured by cancer therapy, Journal of the Royal Statistical Society Series B, 11, 15-53.
- Brooks SP (2002). Discussion on the paper by Spiegelhalter, Best, Carlin, and van der Linde (2002). Journal of the Royal Statistical Society Series B, 64, 616-618.
- Cancho VG, Louzada F, and Ortega EM (2013). The power series cure rate model: an application to a cutaneous melanoma data, Communications in Statistics-Simulation and Computation, 42, 586-602. https://doi.org/10.1080/03610918.2011.639971
- Caroni C, Crowder M, and Kimber A (2010). Proportional hazards models with discrete frailty, Lifetime Data Analysis, 16, 374-384. https://doi.org/10.1007/s10985-010-9151-3
- Casella G and George EI (1992). Explaining the Gibbs sampler, The American Statistician, 46, 167-174.
- Chahkandi M and Ganjali M (2009). On some lifetime distributions with decreasing failure rate, Computational Statistics & Data Analysis, 53, 4433-4440. https://doi.org/10.1016/j.csda.2009.06.016
- Chen MH, Ibrahim JG, and Sinha D (1999). A new Bayesian model for survival data with a surviving fraction, Journal of the American Statistical Association, 94, 909-919. https://doi.org/10.1080/01621459.1999.10474196
- Chib S and Greenberg E (1995). Understanding the Metropolis-Hastings algorithm, The American Statistician, 49, 327-335.
- Cho H, Ibrahim JG, Sinha D, and Zhu H (2009). Bayesian case influence diagnostics for survival models, Biometrics, 65, 116-124. https://doi.org/10.1111/j.1541-0420.2008.01037.x
- Choo-Wosoba H, Levy SM, and Datta S (2015). Marginal regression models for clustered count data based on zero-inflated Conway-Maxwell-Poisson distribution with applications, Biometrics, 2, 606-618.
- Consul PC and Jain GC (1973). A generalization of the Poisson distribution, Technometrics, 15, 791-799. https://doi.org/10.1080/00401706.1973.10489112
- Cook RD and Weisberg S (1982). Residuals and Influence in Regression, Chapman and Hall, New York.
- Cordeiro GM, Cancho VG, Ortega EMM, and Barriga GDC (2016). A model with long-term survivors: negative binomial Birnbaum-Saunders, Communications in Statistics-Theory and Methods, 45, 1370-1387. https://doi.org/10.1080/03610926.2013.863929
- Coskun K (2007). A new lifetime distribution, Computational Statistics & Data Analysis, 51, 4497-4509. https://doi.org/10.1016/j.csda.2006.07.017
- Cowles MK and Carlin BP (1996). Markov chain Monte Carlo convergence diagnostics: a comparative review, Journal of the American Statistical Association, 91, 883-904. https://doi.org/10.1080/01621459.1996.10476956
- del Castillo J and Perez-Casany M (2005). Overdispersed and underdispersed Poisson generalizations, Journal of Statistical Planning and Inference, 134, 486-500. https://doi.org/10.1016/j.jspi.2004.04.019
- Dey DK and Birmiwal LR (1994). Robust Bayesian analysis using divergence measures. Statistics & Probability Letters, 20, 287-294. https://doi.org/10.1016/0167-7152(94)90016-7
- Eudes AM, Tomazella VLD, and Calsavara VF (2013). Modelagem de sobrevivencia com fracao de cura para dados de tempo de vida Weibull modificada, Revista Brasileira de Biometria, 30, 326-342.
- Geisser S and Eddy WF (1979). A predictive approach to model selection, Journal of the American Statistical Association, 74, 153-160. https://doi.org/10.1080/01621459.1979.10481632
- Gelfand AE, Dey DK, and Chang H (1992). Model determination using predictive distributions with implementation via sampling-based methods. In Bayesian Statistics: Proceedings of the Fourth Valencia International Meeting, April 15-20, 1991, volume 4, pages 147-167. Oxford University Press, USA.
- Gupta PL, Gupta RC, and Tripathi RC (1995). Inflated modified power series distributions with applications, Communications in Statistics-Theory and Methods, 24, 2355-2374. https://doi.org/10.1080/03610929508831621
- Hougaard P (1986). A class of multivariate failure time distributions, Biometrika, 73, 671-678.
- Ibrahim JG, Chen MH, and Sinha D (2005). Bayesian Survival Analysis, Springer, New York.
- Kirkwood JM, Ibrahim JG, Sondak VK, et al. (2000). High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190, Journal of Clinical Oncology, 18, 2444-2458. https://doi.org/10.1200/JCO.2000.18.12.2444
- Li CS, Taylor JMG, and Sy JP (2001). Identifiability of cure models, Statistics & Probability Letters, 54, 389-395. https://doi.org/10.1016/S0167-7152(01)00105-5
- Milani EA, Tomazella VLD, Dias TCM, and Louzada F (2015). The generalized time-dependent logistic frailty model: an application to a population-based prospective study of incident cases of lung cancer diagnosed in Northern Ireland, Brazilian Journal of Probability and Statistics, 29, 132-144. https://doi.org/10.1214/13-BJPS232
- Moger TA, Aalen OO, Halvorsen TO, Storm HH, and Tretli S (2004). Frailty modelling of testicular cancer incidence using Scandinavian data, Biostatistics, 5, 1-14. https://doi.org/10.1093/biostatistics/5.1.1
- Morel JG and Neerchal NK (2012). Overdispersion models in SAS. SAS Institute Inc., Cary, NC.
- Morita LHM, Tomazella VL, and Louzada-Neto F (2016). Accelerated lifetime modelling with frailty in a non-homogeneous Poisson process for analysis of recurrent events data, Quality Technology & Quantitative Management, 1-21.
- Ortega EMM, Cordeiro GM, Campelo AK, Kattan MW, and Cancho VG (2015). A power series beta Weibull regression model for predicting breast carcinoma, Statistics in Medicine, 34, 1366-1388. https://doi.org/10.1002/sim.6416
- Peng F and Dey DK (1995). Bayesian analysis of outlier problems using divergence measures, Canadian Journal of Statistics, 23, 199-213. https://doi.org/10.2307/3315445
- R Development Core Team (2010). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Rodrigues J, Cancho VG, de Castro M, and Louzada-Neto F (2009a). On the unification of long-term survival models, Statistics & Probability Letters, 79, 753-759. https://doi.org/10.1016/j.spl.2008.10.029
- Rodrigues J, de Castro M, Cancho VG, and Balakrishnan N (2009b). COM-Poisson cure rate survival models and an application to a cutaneous melanoma data, Journal of Statistical Planning and Inference, 139, 3605-3611. https://doi.org/10.1016/j.jspi.2009.04.014
- Samani EB, Amirian Y, and Ganjali M (2012). Likelihood estimation for longitudinal zero-inflated power series regression models, Journal of Applied Statistics, 39, 1965-1974. https://doi.org/10.1080/02664763.2012.699951
- Spiegelhalter DJ, Best NG, Carlin BP, and van der Linde A (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society Series B, 64, 583-639. https://doi.org/10.1111/1467-9868.00353
- Sun FB and Kececloglu DB (1999). A new method for obtaining the TTT-plot for a censored sample. In Proceedings of the Annual Reliability and Maintainability Symposium, 112-116.
- Tahmasbi R and Rezaei S (2008). A two-parameter lifetime distribution with decreasing failure rate, Computational Statistics & Data Analysis, 52, 3889-3901. https://doi.org/10.1016/j.csda.2007.12.002
- Tsodikov AD, Ibrahim JG, and Yakovlev AY (2003). Estimating cure rates from survival data: an alternative to two-component mixture models, Journal of the American Statistical Association, 98, 1063-1078. https://doi.org/10.1198/01622145030000001007
- Van den Broek J (1995). A score test for zero inflation in a Poisson distribution, Biometrics, 51, 738-743. https://doi.org/10.2307/2532959
- Vaupel JW, Manton KG, and Stallard E (1979). The impact of heterogeneity in individual frailty on the dynamics of mortality, Demography, 16, 439-454. https://doi.org/10.2307/2061224
- Weiss R (1996). An approach to Bayesian sensitivity analysis, Journal of the Royal Statistical Society Series B, 58, 739-750.
- Wienke A (2010). Frailty Models in Survival Analysis, Chapman and Hall/CRC, New York.
- Yakovlev AY and Tsodikov AD (1996). Stochastic Models of Tumor Latency and Their Biostatistical Applications, World Scientific, New Jersey.
- Yang Z, Hardin JW, Addy CL, and Vuong QH (2007). Testing approaches for overdispersion in Poisson regression versus the generalized Poisson model, Biometrical Journal, 49, 565-584. https://doi.org/10.1002/bimj.200610340