DOI QR코드

DOI QR Code

An association of urinary sodium-potassium ratio with insulin resistance among Korean adults

  • Park, Yeong Mi (Department of Foods and Nutrition, Dongduk Women's University) ;
  • Kwock, Chang Keun (Nutrition and Diet Research Group, Korea Food Research Institute) ;
  • Park, Seyeon (Department of Applied Chemistry, Dongduk Women's University) ;
  • Eicher-Miller, Heather A. (Department of Nutrition Science, Purdue University) ;
  • Yang, Yoon Jung (Department of Foods and Nutrition, Dongduk Women's University)
  • Received : 2018.04.02
  • Accepted : 2018.09.20
  • Published : 2018.10.01

Abstract

BACKGROUND/OBJECTIVES: This study was conducted to investigate the effects of sodium-potassium ratio on insulin resistance and sensitivity in Korean adults. SUBJECTS/METHODS: Subjects were 3,722 adults (1,632 men and 2,090 women) aged 40-69 years participating in the Korean genome and epidemiology study_Ansan and Ansung study. Insulin resistance was assessed using homeostasis model assessment of insulin resistance (HoMA-IR) and fasting insulin, and insulin sensitivity was assessed by using the quantitative insulin sensitivity check index (QUICKI). The 24-h urinary sodium and potassium excretion were estimated from spot urinary samples using the Tanaka formula. The generalized linear model was applied to determine the association between urinary sodium-potassium ratio and insulin resistance. RESULTS: HoMA-IR (P-value = 0.029, P-trend = 0.008) and fasting insulin (P-value = 0.017, P-trend = 0.005) levels were positively associated with 24-h estimated urinary sodium-potassium ratio in the multivariable model. QUICKI was inversely associated with 24-h estimated urinary sodium-potassium ratio in all models (P-value = 0.0002, P-trend < 0.0001 in the multivariate model). CONCLUSION: The present study suggests that high sodium-potassium ratio is related to high insulin resistance and low insulin sensitivity. Decreasing sodium intake and increasing potassium intake are important for maintaining insulin sensitivity. Further studies are needed to confirm these findings in longitudinal studies.

Keywords

References

  1. Statistics Korea. Annual Report on the Causes of Death Statistics. Daejeon: Statistics Korea; 2016.
  2. Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest 2000;106:453-8. https://doi.org/10.1172/JCI10762
  3. Reaven GM. Insulin resistance, the insulin resistance syndrome, and cardiovascular disease. Panminerva Med 2005;47:201-10.
  4. Paneni F, Costantino S, Cosentino F. Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep 2014;16:419. https://doi.org/10.1007/s11883-014-0419-z
  5. Patel TP, Rawal K, Bagchi AK, Akolkar G, Bernardes N, Dias DS, Gupta S, Singal PK. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Fail Rev 2016;21:11-23. https://doi.org/10.1007/s10741-015-9515-6
  6. Ames RP. The effect of sodium supplementation on glucose tolerance and insulin concentrations in patients with hypertension and diabetes mellitus. Am J Hypertens 2001;14:653-9. https://doi.org/10.1016/S0895-7061(01)01310-3
  7. Kuroda S, Uzu T, Fujii T, Nishimura M, Nakamura S, Inenaga T, Kimura G. Role of insulin resistance in the genesis of sodium sensitivity in essential hypertension. J Hum Hypertens 1999;13:257-62. https://doi.org/10.1038/sj.jhh.1000800
  8. Dziwura J, Bińczak-Kuleta A, Miazgowski T, Ziemak J, Widecka K. The associations between G972R polymorphism of the IRS-1 gene, insulin resistance, salt sensitivity and non-dipper hypertension. Hypertens Res 2011;34:1082-6. https://doi.org/10.1038/hr.2011.80
  9. Wan Z, Wen W, Ren K, Zhou D, Liu J, Wu Y, Zhou J, Mu J, Yuan Z. Involvement of NLRP3 inflammasome in the impacts of sodium and potassium on insulin resistance in normotensive Asians. Br J Nutr 2018;119:228-37. https://doi.org/10.1017/S0007114517002926
  10. Chatterjee R, Slentz C, Davenport CA, Johnson J, Lin PH, Muehlbauer M, D'Alessio D, Svetkey LP, Edelman D. Effects of potassium supplements on glucose metabolism in African Americans with prediabetes: a pilot trial. Am J Clin Nutr 2017;106:1431-8. https://doi.org/10.3945/ajcn.117.161570
  11. Townsend RR, Kapoor S, McFadden CB. Salt intake and insulin sensitivity in healthy human volunteers. Clin Sci (Lond) 2007;113: 141-8. https://doi.org/10.1042/CS20060361
  12. Raji A, Williams GH, Jeunemaitre X, Hopkins PN, Hunt SC, Hollenberg NK, Seely EW. Insulin resistance in hypertensives: effect of salt sensitivity, renin status and sodium intake. J Hypertens 2001;19: 99-105. https://doi.org/10.1097/00004872-200101000-00013
  13. Nakandakare ER, Charf AM, Santos FC, Nunes VS, Ortega K, Lottenberg AM, Mion D Jr, Nakano T, Nakajima K, D'Amico EA, Catanozi S, Passarelli M, Quintao EC. Dietary salt restriction increases plasma lipoprotein and inflammatory marker concentrations in hypertensive patients. Atherosclerosis 2008;200:410-6. https://doi.org/10.1016/j.atherosclerosis.2007.12.034
  14. Garg R, Williams GH, Hurwitz S, Brown NJ, Hopkins PN, Adler GK. Low-salt diet increases insulin resistance in healthy subjects. Metabolism 2011;60:965-8. https://doi.org/10.1016/j.metabol.2010.09.005
  15. Meland E, Laerum E, Aakvaag A, Ulvik RJ, Hostmark AT. Salt restriction: effects on lipids and insulin production in hypertensive patients. Scand J Clin Lab Invest 1997;57:501-5. https://doi.org/10.3109/00365519709084600
  16. Foo M, Denver AE, Coppack SW, Yudkin JS. Effect of salt-loading on blood pressure, insulin sensitivity and limb blood flow in normal subjects. Clin Sci (Lond) 1998;95:157-64. https://doi.org/10.1042/cs0950157
  17. Ministry of Health and Welfare (KR). Korea Health Statistics 2014: Korea National Health and Nutrition Examination Survey (KNHANES VI-2). Cheongju: Korea Centers for Disease Control and Prevention; 2015.
  18. Iwahori T, Miura K, Ueshima H. Time to consider use of the sodium-to-potassium ratio for practical sodium reduction and potassium increase. Nutrients 2017;9:700. https://doi.org/10.3390/nu9070700
  19. McLean RM. Measuring population sodium intake: a review of methods. Nutrients 2014;6:4651-62. https://doi.org/10.3390/nu6114651
  20. Kim Y, Han BG; KoGES group. Cohort profile: the Korean Genome and Epidemiology Study (KoGES) consortium. Int J Epidemiol 2017;46:1350. https://doi.org/10.1093/ije/dyx105
  21. Kim J, Kim Y, Ahn YO, Paik HY, Ahn Y, Tokudome Y, Hamajima N, Inoue M, Tajima K. Development of a food frequency questionnaire in Koreans. Asia Pac J Clin Nutr 2003;12:243-50.
  22. Ahn Y, Kwon E, Shim JE, Park MK, Joo Y, Kimm K, Park C, Kim DH. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur J Clin Nutr 2007;61:1435-41. https://doi.org/10.1038/sj.ejcn.1602657
  23. Park YM, Kwock CK, Kim K, Kim J, Yang YJ. Interaction between single nucleotide polymorphism and urinary sodium, potassium, and sodium-potassium ratio on the risk of hypertension in Korean adults. Nutrients 2017;9:235. https://doi.org/10.3390/nu9030235
  24. Tanaka T, Okamura T, Miura K, Kadowaki T, Ueshima H, Nakagawa H, Hashimoto T. A simple method to estimate populational 24-h urinary sodium and potassium excretion using a casual urine specimen. J Hum Hypertens 2002;16:97-103. https://doi.org/10.1038/sj.jhh.1001307
  25. O'Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X, Liu L, Yan H, Lee SF, Mony P, Devanath A, Rosengren A, Lopez-Jaramillo P, Diaz R, Avezum A, Lanas F, Yusoff K, Iqbal R, Ilow R, Mohammadifard N, Gulec S, Yusufali AH, Kruger L, Yusuf R, Chifamba J, Kabali C, Dagenais G, Lear SA, Teo K, Yusuf S; PURE Investigators. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N Engl J Med 2014;371:612-23. https://doi.org/10.1056/NEJMoa1311889
  26. O'Donnell MJ, Yusuf S, Mente A, Gao P, Mann JF, Teo K, McQueen M, Sleight P, Sharma AM, Dans A, Probstfield J, Schmieder RE. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA 2011;306:2229-38.
  27. Khaw KT, Bingham S, Welch A, Luben R, O'Brien E, Wareham N, Day N. Blood pressure and urinary sodium in men and women: the Norfolk Cohort of the European Prospective Investigation into Cancer (EPIC-Norfolk). Am J Clin Nutr 2004;80:1397-403. https://doi.org/10.1093/ajcn/80.5.1397
  28. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412-9. https://doi.org/10.1007/BF00280883
  29. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 2000;85:2402-10. https://doi.org/10.1210/jcem.85.7.6661
  30. Chun YH, Han K, Kim DH, Park YG, Cho KH, Choi YS, Kim SM, Kim YH, Nam GE. Association of urinary sodium excretion with insulin resistance in Korean adolescents: results from the Korea National Health and Nutrition Examination Survey 2009-2010. Medicine (Baltimore) 2016;95:e3447. https://doi.org/10.1097/MD.0000000000003447
  31. Kim YM, Kim SH, Shim YS. Association of sodium intake with insulin resistance in Korean children and adolescents: the Korea National Health and Nutrition Examination Survey 2010. J Pediatr Endocrinol Metab 2018;31:117-25. https://doi.org/10.1515/jpem-2017-0362
  32. Fonseca-Alaniz MH, Brito LC, Borges-Silva CN, Takada J, Andreotti S, Lima FB. High dietary sodium intake increases white adipose tissue mass and plasma leptin in rats. Obesity (Silver Spring) 2007;15:2200-8. https://doi.org/10.1038/oby.2007.261
  33. Lopes KL, Furukawa LN, de Oliveira IB, Dolnikoff MS, Heimann JC. Perinatal salt restriction: a new pathway to programming adiposity indices in adult female Wistar rats. Life Sci 2008;82:728-32. https://doi.org/10.1016/j.lfs.2008.01.003
  34. Fonseca-Alaniz MH, Takada J, Andreotti S, de Campos TB, Campaña AB, Borges-Silva CN, Lima FB. High sodium intake enhances insulin-stimulated glucose uptake in rat epididymal adipose tissue. Obesity (Silver Spring) 2008;16:1186-92. https://doi.org/10.1038/oby.2008.69
  35. Hall JE. Control of sodium excretion by angiotensin II: intrarenal mechanisms and blood pressure regulation. Am J Physiol 1986; 250:R960-72.
  36. Wasada T. Adenosine triphosphate-sensitive potassium (KATP) channel activity is coupled with insulin resistance in obesity and type 2 diabetes mellitus. Intern Med 2002;41:84-90. https://doi.org/10.2169/internalmedicine.41.84

Cited by

  1. Influence of Diet Behavior on Insulin Resistance in Hypertensive Black Sub-Saharan Africans: A Multicentric, Cross-Sectional Study vol.10, pp.9, 2018, https://doi.org/10.4236/wjcd.2020.109060
  2. Potassium intake, skeletal muscle mass, and effect modification by sex: data from the 2008–2011 KNHANES vol.19, pp.1, 2018, https://doi.org/10.1186/s12937-020-00614-z
  3. Dietary sodium:potassium ratio and CVD risk factors among Japanese adults: a retrospective cross-sectional study of pooled data from the National Health and Nutrition Survey, 2003-2017 vol.125, pp.1, 2018, https://doi.org/10.1017/s000711452000269x