DOI QR코드

DOI QR Code

Plasmon-enhanced Infrared Spectroscopy Based on Metasurface Absorber with Vertical Nanogap

  • Hwang, Inyong (School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Jongwon (School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology) ;
  • Jung, Joo-Yun (Nano-convergence Mechanical Systems Research Division, Korea Institute Machinery and Materials)
  • 투고 : 2018.08.06
  • 심사 : 2018.08.25
  • 발행 : 2018.09.30

초록

In this study, we introduce a sensing platform based on a plasmonic metasurface absorber (MA) with a vertical nanogap for the ultrasensitive detection of monolayer molecules. The vertical nanogap of the MA, where the extremely high near-field is uniformly distributed and exposed to the external environment, is formed by an under-cut structure between a metallic cross nanoantenna and the mirror layer. The accessible sensing area and the enhanced near-field of the MA further enhance the sensitivity of surface-enhanced infrared absorption for the target molecule of 1-octadecanethiol. To provide strong coupling between the molecular vibrations and plasmonic resonance, the design parameters of the MA with a vertical nanogap are numerically designed.

키워드

참고문헌

  1. P. R. Griffiths, J. A. De Haseth, and J. D. Winefordner, Fourier Transform Infrared Spectrometry, John Wiley & Sons, Hoboken, NJ, 2007.
  2. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, "Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection," Phys. Rev. Lett., Vol. 101, No. 15, pp. 157403-157406, 2008. https://doi.org/10.1103/PhysRevLett.101.157403
  3. E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, "Split ring resonator sensors for infrared detection of single molecular monolayers," Appl. Phys. Lett., Vol. 95, No. 4, pp. 043113-043115, 2009. https://doi.org/10.1063/1.3194154
  4. A. E. Cetin, D. Etezadi, and H. Altug, "Accessible near-fields by nanoantennas on nanopedestals for ultrasensitive vibrational spectroscopy," Adv. Opt. Mat., Vol. 2, No. 9, pp. 866-872, 2014. https://doi.org/10.1002/adom.201400171
  5. C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, "Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared," ACS Photonics, Vol. 2, No. 4, pp. 497-505, 2015. https://doi.org/10.1021/ph500374r
  6. C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, "Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods," ACS Photonics, Vol. 2, No.10, pp. 1489-1497, 2015. https://doi.org/10.1021/acsphotonics.5b00390
  7. K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, "Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy", Adv. Func. Mat., Vol. 25, No. 42, pp. 6637-6643, 2015. https://doi.org/10.1002/adfm.201501151
  8. A. Ishikawa and T. Tanaka, "Metamaterial absorbers for infrared detection of molecular self-assembled monolayers," Sci. Rep., Vol. 5, No. 12570, pp. 1-7, 2015.
  9. P. A. Huidobro, M. Kraft, S. A. Maier, and J. B. Pendry, "Graphene as a tunable anisotropic or isotropic plasmonic metasurface," ACS nano, Vol. 10, No. 5, pp. 5499-5506, 2016. https://doi.org/10.1021/acsnano.6b01944
  10. X. Ni, A. V. Kildishev, and A. V. Shalaev, "Metasurface holograms for visible light," Nat. Commun., Vol. 4, No. 2807, pp. 1-6, 2013.
  11. N. Yu and F. Capasso, "Flat optics with designer meta-surfaces," Nat. Mater., Vol. 13, pp. 139-150, 2014. https://doi.org/10.1038/nmat3839
  12. M. ElBadawe, T. S. Almoneef, and O. M. Ramahi, "A True Metasurface Antenna," Sci. Rep., Vol. 6, No. 19268, pp. 1- 8, 2016.
  13. N. F. Yu, P. Genevet, M. Kats, F. Aieta, J. P. Tetienne, J. P. Gapasso, and Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, pp. 333-337, 2011. https://doi.org/10.1126/science.1210713
  14. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, pp. 207402-207405, 2008. https://doi.org/10.1103/PhysRevLett.100.207402
  15. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Xiangang, "Design principles for infrared wide-angle perfect absorber based on plasmonic structure," Opt. Exp., Vol. 19, No. 18, pp. 17413-17420, 2011. https://doi.org/10.1364/OE.19.017413
  16. Q. Feng, M. Pu, C. Hu, and X. Luo, "Engineering the dispersion of metamaterial surface for broadband infrared absorption," Opt. Lett., Vol. 37, No. 11, pp. 2133-2135, 2012. https://doi.org/10.1364/OL.37.002133
  17. A. Andryieuski and A. V. Lavrinenko, "Graphene meta-materials based tunable terahertz absorber: Effective surface conductivity approach," Opt. Exp., Vol. 21, No. 7, pp. 9144-9155, 2013. https://doi.org/10.1364/OE.21.009144
  18. L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, "Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties," J. Am. Chem. Soc., Vol. 135, No. 9, pp. 3688-3695, 2013. https://doi.org/10.1021/ja312694g
  19. C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, "Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold," J. Am. Chem. Soc., Vol. 111, No. 1, pp. 321-335, 1989. https://doi.org/10.1021/ja00183a049
  20. X. Chen, C. Wang, Y. Yao, and C. Wang, "Plasmonic vertically coupled complementary antennas for dual-mode infrared molecule sensing," ACS Nano, Vol. 11, No. 8, pp. 8034-8046, 2017. https://doi.org/10.1021/acsnano.7b02687