DOI QR코드

DOI QR Code

Systems Analyses of Alternative Technologies for the Recovery of Seawater Uranium

  • Received : 2018.02.07
  • Accepted : 2018.09.03
  • Published : 2018.09.30

Abstract

The ability to recover the nearly limitless supply of uranium contained within the world's oceans would provide supply security to uranium based fuel cycles. Therefore, in addition to U.S. national laboratories conducting R&D on a system capable of harvesting seawater uranium, a number of collaborative university partners have developed alternative technologies to complement the national laboratory scheme. This works summarizes the systems analysis of such novel uranium recovery technologies along with their potential impacts on seawater uranium recovery. While implementation of some recent developments can reduce the cost of seawater uranium by up to 30%, other researchers have sought to address a weakness while maintaining cost competitiveness.

Keywords

References

  1. S. Das ,Y. Oyola, R, Mayes, C.J. Janke, L.-J. Kuo, G. Gill, J.R. Woods, and D.I. Dai., "Extracting Uranium from Seawater: Promising AF Series Adsorbents", Ind. Eng. Chem. Res., 55(15), 4110-4117 (2015). https://doi.org/10.1021/acs.iecr.5b03136
  2. S. Das,W.P Liao, M. Flicker Byers, C. Tsouris, C.J. Janke, R.T. Mayes, E. Schenider, L.-J. Kuo, J.R. Wood, G.A. Gill, and S. Dai, "Alternative Alkaline Conditioning of Amidoxime Based Adsorbent for Uranium Extraction from Seawater", Ind. Eng. Chem. Res., 55(15), 4303-4312 (2015). https://doi.org/10.1021/acs.iecr.5b03210
  3. H.B. Pan, C.M. Wai, L.-J. Kuo, G.A. Gill, G.X. Tian, L.F. Rao, S. Das, R.T. Mayes, and C.J. Janke, "Bicarbonate Elution of uranium from amidoxime-based polymer adsorbens for sequestering uranium from seawater", Chem. Sel., 2(13), 3769-3774 (2017).
  4. L.-J. Kuo, H-B. Pan, C.M. Wai, M.F. Byers, E. Schneider, J.E. Strivens, C.J. Janke. S. Das, R.T Mayes, J.R. Wood, N. Schlafer, and G.A. Gill, "Investigations into the reusability of amidoxime-based polymeric adsorbents for seawater uranium extraction", Ind. Eng. Chem. Res., 56(40), 11603-11611 (2017). https://doi.org/10.1021/acs.iecr.7b02893
  5. E. Schneider and D. Sachde, "The Cost of Recovering Uranium from Seawater by a Braided Polymer Adsorbent System", Sci. Glob. Secur., 21(2), 134-163 (2013). https://doi.org/10.1080/08929882.2013.798993
  6. M.F. Byers and E. Schneider, "Optimization of the Passive Recovery of Uranium from Seawater", Ind. Eng. Chem. Res., 55(15), 4351-4361 (2015). https://doi.org/10.1021/acs.iecr.5b03242
  7. M.F. Byers and E. Schneider, "Uranium from Seawater Cost Analysis: Recent Updates", Trans. Am. Nucl. Soc. 2016 Annu. Meet., 114(1), 161-164 (2016).
  8. J. Park, G.A. Gill, J.E. Strivens, L-J. Kuo, R.T. Jeters, A. Abila, J.R. Wood, N.J. Schlafer, C.J. Janke, E.A. Miller, M. Thomas, R.S. Addleman, and G.T. Bonheyo, "Effect of biofouling on the performance of amidoxime-based polymeric uranium adsorbents Effect Of Biofouling On The Performance Of Amidoxime-Based Pol- ymeric Uranium Adsorbents", Ind. Eng. Chem. Res., 55(15), 4328-4338 (2016). https://doi.org/10.1021/acs.iecr.5b03457
  9. T. Sugo, M. Tamada, T. Seguchi, T. Shimizu, M. Uotani, and R. Kashima, "Recovery system for uranium from seawater with fibrous adsorbent and its preliminary cost estimation", J. At. Energy Soc. Japan, 43(10), 1010-1016 (2010). https://doi.org/10.3327/jaesj.43.1010
  10. S.D. Alexandratos, X. Zhu, M. Florent, and R. Sellin, "Polymer-Supported Bifunctional Amidoximes for the Sorption of Uranium from Seawater", Ind. Eng. Chem. Res., 55(15), 4208-4216 (2016). https://doi.org/10.1021/acs.iecr.5b03742
  11. T.C. Dietz, C.E. Tomaszewski, Z. Tsinas, D. Poster, A. Barkatt, M. Adel-hadadi, F.B. Bateman, L.T. Cumberland, E. Schnieder, K. Gaskell, J. Laverne, and M. Al-sheikhly, "Uranium Removal from Seawater by Means of Polyamide 6 Fibers Directly Grafted with Diallyl Oxalate through a Single-Step, Solvent- Free Irradiation Process", Ind. Eng. Chem. Res., 55(15), 4179-4186 (2016). https://doi.org/10.1021/acs.iecr.5b03401
  12. P.S. Barber, C.S. Griggs, J.R. Bonner, and R.D. Rogers, "Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells", Green Chem., 15(3), 601-607 (2013). https://doi.org/10.1039/c2gc36582k
  13. M. Picard, C. Baelden, Y. Wu, L. Chang, and A.H. Slocum, "Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System", Nucl. Technol., 188(2), 200-217 (2014). https://doi.org/10.13182/NT13-144
  14. M. Byers, M.N. Haji, E. Schneider, and A.H. Slocum, "A Higher Fidelity Cost Analysis of Wind and Uranium from Seawater Acquisition SymBiotic Infrastructure", Trans. Am. Nucl. Soc. 2016 Annu. Meet., 115, 271-274 (2016).
  15. M.F. Byers, M.N. Haji, A.H. Slocum, and E.A. Schneider, "Cost Optimization of a Symbiotic System to Harvest Uranium from Seawater via an Offshore Wind Turbine", Ocean Eng. Accepted., 2017.
  16. M. Haji, C. Delmy, J. Gonzalez, and A.H. Slocum, "Uranium Extraction from Seawater using Adsorbent Shell Enclosures via a Symbiotic Offshore Wind Turbine Device", Proc. of the Twenty-sixth (2016) INt. Ocean and Polar Eng. Conf. (2016).
  17. M.F. Byers, S. Landsberger, and E. Schneider, "The use of silver nanoparticles for the recovery of uranium from seawater by means of biofouling mitigation", Sustainable Energy and Fuels (2018).
  18. L.-J. Kuo, G. Gill, C. Tsouris, L. Rao, H.-B. Pan, C. Wai, C. Janke, J. Strivens, J. Wood, N. Schlafer, and E. D'Alessandro, "Temperature Dependence of Uranium and Vanadium Adsorption on Amidoxime Based Adsorbents in Natural Seawater", Chem. Select, 2(2), 834- 848 (2018).
  19. A. Ladshaw, L.-J. Kuo, J. Strivens, J. Wood, N. Schlafer, S. Yiacoumi, C. Tsouris, and G. Gill, "Influence of Current Velocity on Uranium Adsorption from Seawater Using an Amidoxime-Based Polymer Fiber Adsorbent", Ind. Eng. Chem. Res., 56(8), 2205-2211 (2017). https://doi.org/10.1021/acs.iecr.6b04539