References
- J.Y. Lee, D.K. Cho, H.J. Choi, and J.W. Choi, "Concept of a Korean reference disposal system for spent fuels", J. Nucl. Sci. Technol., 44(12), 1563-1573 (2007).
- Swedish Nuclear Fuel Supply Co/Division KBS, "Final storage of spent nuclear fuel-KBS3", Svensk Kärnbränslehantering AB Report, Stockholm (1983).
- J.W. Lee, H.J. Choi, and J.Y. Lee, "Thermal conductivity of compacted bentonite as a buffer material for a high-level radioactive waste repository", Ann. Nucl. Energy, 94, 848-855 (2016). https://doi.org/10.1016/j.anucene.2016.04.053
- M.J. Kim, S.R. Lee, S. Yoon, J.S. Jeon, and M.S. Kim, "Effect of thermal properties of bentonite buffer on temperature variation", J. Korean Geotech. Soc., 34(1), 17- 24 (2018). https://doi.org/10.7843/KGS.2018.34.1.17
- M. Yoo, H.J. Choi, M.S. Lee, and S.Y. Lee, "Measurement of properties of domestic bentonite for a buffer of an HLW repository", J. Nucl. Fuel Cycle Waste Technol., 14(2), 135-147 (2016). https://doi.org/10.7733/jnfcwt.2016.14.2.135
- Karnland, "Chemical and mineralogical characterization of the bentonite buffer for the acceptance control procedure in a KBS-3 repository", Svensk Kärn-bränslehantering AB Report, SKB TR-10-60 (2010).
- F.T. Madsen, "Clay mineralogical investigation related to nuclear waste disposal", Clay Mincerals, 33(1), 109-129 (1988).
- C. Ould-Lahoucine, H. Sakashita, and T. Kumada, "Measurement of thermal conductivity of buffer materials and evaluation of existing correlation predicting it", Nucl. Eng. Des., 216(1-3), 1-11 (2002). https://doi.org/10.1016/S0029-5493(02)00033-X
- A.M. Tang, Y.J. Cui, and T.T. Lee, "A study on the thermal conductivity of compacted bentonite", Appl. Clay Sci., 41(3-4), 181-189 (2008). https://doi.org/10.1016/j.clay.2007.11.001
- W.J. Cho, J.W. Lee, and S. Kwon, "An empirical model for the thermal conductivity of compacted bentonite and a bentonite-sand mixture", Heat Mass Transf., 47(11), 1385-1393 (2011). https://doi.org/10.1007/s00231-011-0800-1
- M. Wang, Y.F. Chen, S. Zhou, R. Hu, and C.B. Zhou, "A homogenization-based model for the effective thermal conductivity of bentonite-sand-based buffer material", Int. Commun. Heat Mass Transf., 68, 43-49 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2015.08.007
- S. Yoon, G.Y. Kim, T.J. Park, and J.K. Lee, "Thermal properties of buffer material for a high-level waste repository considering temperature variation", J. Korean Geotech. Soc., 33(10), 25-31 (2017).
- M.V. Villar, P.L. Martin, and J.M. Barcala, "Modification of physical, mechanical and hydraulic properties of bentonite by thermo-hydraulic gradients", Eng. Geol., 81(3), 284-297 (2006). https://doi.org/10.1016/j.enggeo.2005.06.012
- J.O. Lee, Y.C. Choi, M.S. Lee, and H.J. Choi, "Thermal expansion characteristics of the compacted bentonite buffer", Proc. of Spring Conf. of J. Nucl. Fuel Cycle Waste Technol., 159-160 (2015).
- S. Yoon, G.Y. Kim, and M.H. Baik, "A prediction of specific heat capacity for compacted bentonite buffer", J. Nucl. Fuel Cycle Waste Technol., 15(3), 199-206 (2017). https://doi.org/10.7733/jnfcwt.2017.15.3.199
- ASTM E 228: Standard test method for linear thermal expansion of solid materials with a push-rod dilatometer (2017).
- J.O. Lee, K. Birch, and H.J. Choi, "Coulped thermalhydro analysis of unsaturated buffer and backfill in a high-level waste repository", Ann. Nucl. Energy, 72, 63-75 (2014).
- "Properties of air", Accessed Feb. 20 2018. Available from: http://www.solarview.net/archives/339 (2018).
- L. Borgesson, H. Hokmark, and O. Karnland, "Rheological properties of sodium smectite clay", Swedish Nuclear Fuel and Waste Management Co. Report, SKB-TR-88-30 (1988).
- K.H. Jeon, "Probabilistic analysis of unsaturated soil properties for Korean weathered granite soil", Master Thesis, KAIST (2012).
- N.V. Nikhil and S.R. Lee, "A hybrid feature selection algorithm integrating an extreme learning machine for landslide susceptibility modeling of Mt. Woomyeon, South Korea", Geomorph., 263, 50-70 (2016). https://doi.org/10.1016/j.geomorph.2016.03.023
- I.H. Lee, "Easy flow regression analysis", Hannarae Publishing Corporation (2014).
- J.Y. Park, "Statistical entrainment growth rate estimation model for debris-flow runout prediction", Master Thesis, KAIST (2015).
Cited by
- 고준위방사성폐기물 처분시스템의 압축 벤토나이트 완충재의 포화 수리전도도 추정 vol.18, pp.2, 2018, https://doi.org/10.7733/jnfcwt.2020.18.2.133