DOI QR코드

DOI QR Code

Application of Phase-Field Theory to Model Uranium Oxide Reduction Behavior in Electrolytic Reduction Process

전해환원 공정의 우라늄 산화물 환원 거동 모사를 위한 Phase-Field 이론 적용

  • Received : 2018.07.10
  • Accepted : 2018.08.21
  • Published : 2018.09.30

Abstract

Under a pyro-processing concept, an electrolytic reduction process has been developed to reduce uranium oxide in molten salt by electrochemical means as a part of spent fuel treatment process development. Accordingly, a model based on electrochemical theory is required to design a reactor for the electrolytic reduction process. In this study, a 1D model based on the phase-field theory, which explains phase separation behaviors was developed to simulate electrolytic reduction of uranium oxide. By adopting parameters for diffusion of oxygen elements in a pellet and electrochemical reaction rate at the surface of the pellet, the model described the behavior of inward reduction well and revealed that the current depends on the internal diffusion of the oxygen element. The model for the electrolytic reduction is expected to be used to determine the optimum conditions for large scale reactor design. It is also expected that the model will be applied to simulate the integration of pyro-processing.

파이로 공정에서는 사용후핵연료 관리 공정 개발의 일환으로 산화 우라늄을 고온 용융염 전해질계에서 전기화학적 방법으로 환원시키기 위한 전해환원 공정이 개발되고 있다. 이에 따른 전해환원 공정의 반응기 설계를 위해서는 전기화학적 이론에 기초한 모델이 요구되고 있다. 본 연구에서는 상 분리를 설명하는 phase-field 이론에 기초하여 우라늄 산화물의 전해환원 모사를 위한 1차원 모델이 개발되었다. 모델은 우라늄 산화물 내 산소 원소의 확산과 펠렛 표면에서 전기화학 반응 속도를 나타내는 매개변수를 사용하여 외부로부터 내부로 진행되는 전해환원을 잘 모사하고 있으며 계산 결과 전체 전류는 산소원소의 내부 확산에 크게 의존하는 것으로 나타났다. 전해환원 반응에 대한 모델은 대용량 장치 설계에 최적화된 조건 도출에 활용될 것으로 예상되며 장치 설계가 완료되면 공정 연계 모사에 직접 사용될 것으로 기대된다.

Keywords

References

  1. J.H. Yoo, C.S. Seo, E.H. Kim, and H.S. Lee, "A Conceptual Study of Pyroprocessing for Recovering Actinides", Nucl. Eng. Technol., 40(7), 581-592 (2008). https://doi.org/10.5516/NET.2008.40.7.581
  2. K.C. Song, H.S. Lee, J.M. Hur, J.G. Kim, D.H. Ahn, and Y.Z. Cho, "Status of Pyroprocessing Technology Development in Korea", Nucl. Eng. Technol., 42(2), 131-144 (2010). https://doi.org/10.5516/NET.2010.42.2.131
  3. J.M. Hur, C.S. Seo, S.S. Hong, D.S. Kang, and S.W. Park, "Metallization of $U_3O_8$ Via Catalytic Electrochemical Reduction with $Li_2O$ in LiCl Molten Salt", React. Kinet. Catal. Lett., 80(2), 217-222 (2003). https://doi.org/10.1023/B:REAC.0000006128.15961.1d
  4. S.M. Jeong, S.B. Park, S.S. Hong, C.S. Seo, and S.W. Park, "Electrolytic Production of Metallic Uranium from $U_3O_8$ in a 20-kg batch Scale Reactor", J. Radioanal. Nucl. Chem., 268(2), 349-356 (2006). https://doi.org/10.1007/s10967-006-0172-z
  5. S.B. Park, B.H. Park, S.M. Jeong, J.M. Hur, C.S. Seo, S.H. Choi, and S.W. Park, "Characteristics of An Integrated Cathode Assembly for the Electrolytic Reduction of Uranium Oxide in a $LiCl-Li_2O$ Molten Salt", J. Radioanal. Nucl. Chem., 268(3), 489-495 (2006). https://doi.org/10.1007/s10967-006-0196-4
  6. J.M. Hur, T.J. Kim, I.K. Choi, J.B. Do, S.S. Hong, and C.S. Seo, "Chemical Behavior of Fission Products in the Pyrochemical Process", Nucl. Technol., 162(2), 192-198 (2008). https://doi.org/10.13182/NT08-A3947
  7. E.Y. Choi, J.W. Lee, J.J. Park, J.M. Hur, J.K. Kim, K.Y. Jung, and S.M. Jeong, "Electrochemical Reduction Behavior of a Highly Porous SIMFUEL Particle in a LiCl Molten Salt", Chem. Eng. J., 207-208, 514-520 (2012). https://doi.org/10.1016/j.cej.2012.06.161
  8. H. Assadi, "Phase-field Modelling of Electro-deoxidation in Molten Salt", Modeling Simul. Mater. Sci. Eng., 14(6), 963-974 (2006). https://doi.org/10.1088/0965-0393/14/6/006
  9. G.Z. Chen, D.J. Fray, and T.W. Farthing., "Direct Electrochemical Reduction of Titanium Dioxide to Titanium in Molten Calcium Chloride", Nature, 407, 361-364 (2000). https://doi.org/10.1038/35030069
  10. P. Kar and J.W. Evans, "A Shrinking Core Model for the Electro-deoxidation of Metal Oxides in Molten Halides Salts", Electrochim. Acta, 53(16), 5260-5265 (2008). https://doi.org/10.1016/j.electacta.2008.02.053
  11. P. Kar and J.W. Evans, "A Model for the Electrochemical Reduction of Metal Oxides in Molten Salt Electrolytes", Electrochim. Acta, 54(2), 835-843 (2008). https://doi.org/10.1016/j.electacta.2008.06.040
  12. Y. Deng, W. Xiao, and G.Z. Chen, "Electrochemistry at Conductor/Insulator/Electrolyte Three-phase Interlines: A Thin Layer Model", J. Phys. Chem. B, 109(29), 14043-14051 (2005). https://doi.org/10.1021/jp044604r
  13. W. Xiao, X. Jin, Y. Deng, D. Wang, and G.Z. Chen, "Three-phase Interlines Electrochemically Driven into Insulator Compounds: A Penetration Model and Its Verification by Electroreduction of Solid AgCl", Chem. Eur. J., 13(2), 604-612 (2007). https://doi.org/10.1002/chem.200600172
  14. S.M. Jeong, H.S. Shin, S.S. Hong, J.M. Hur, J.B. Do, and H.S. Lee, "Electrochemical Reduction Behavior of $U_3O_8$ Powder in a LiCl Molten Salt", Electrochim. Acta, 55(5), 1749-1755 (2010). https://doi.org/10.1016/j.electacta.2009.10.060
  15. W. M. Haynes Ed., CRC Handbook of Chemistry and Physics, 95th Ed., CRC Press (2014).
  16. G. J. Janz, Molten Salts Handbook, Academic Press, New York (1967).
  17. T. Meek, M. Hu, and M.J. Haire, "Semiconductive Properties of Uranium Oxides", Waste Management 2001 Symposium, Tucson, Arizona (2001).
  18. P. Ruello, G. Chirlesan, G. Petot-Ervas, C. Petot, and L. Desgranges, "Chemical Diffusion in Uranium Dioxide - Influence of Defect Interactions", J. Nucl. Mater., 325(2-3), 202-209 (2004). https://doi.org/10.1016/j.jnucmat.2003.12.007