DOI QR코드

DOI QR Code

KURT 화강암 내 우라늄의 지화학적 용출특성에 미치는 용존이온의 영향

Influence of Dissolved Ions on Geochemical Dissolution of Uranium in KURT Granite

  • 투고 : 2018.04.12
  • 심사 : 2018.07.26
  • 발행 : 2018.09.30

초록

고준위방사성폐기물 심지층 처분 대상 암종으로 고려되는 화강암에서 방사성핵종의 장기 거동특성을 이해하기 위한 연구의 일환으로 KURT (KAERI Underground Research Tunnel) 화강암에 존재하는 우라늄의 용출특성에 대한 연구를 수행하였다. 반응 시작 후부터 10일 동안의 반응기간 중 다른 반응용액에 비해 $CO_3{^{2-}}$ 농도가 높은 $UD-CO_3$ 및 UD-Bg 반응용액에서 우라늄의 용출량이 다소 급격하게 증가하였다. 또한 Na 또는 Ca가 다량 함유된 반응용액에서 반응 60일 이후 우라늄 용출량이 다소 급격히 증가하였다. 각 반응용액에 의한 반응 270일까지의 우라늄의 용출량은 $UD-CO_3$ ($44.61{\mu}g{\cdot}L^{-1}$), UD-Bg($41.01{\mu}g{\cdot}L^{-1}$), UD-Na ($26.87{\mu}g{\cdot}L^{-1}$), UD-Ca ($20.26{\mu}g{\cdot}L^{-1}$), UD-CaSi ($17.03{\mu}g{\cdot}L^{-1}$), UD-Si ($10.47{\mu}g{\cdot}L^{-1}$)으로 지속적으로 증가 하였으나, 반응 270일 이후 우라늄 용출량은 점차 감소하는 경향을 나타낸다. 이는 화강암 시료 내에 존재하는 우라늄이 반응용액과 상호반응에 의해 최대 용출될 수 있는 한계에 도달하였기 때문으로 판단된다. 우라늄 용출은 혼합된 반응용액 내의 $CO_3{^{2-}}$ 존재와 수질의 지화학적 유형에 따라 우라늄의 용출 농도 및 용출 최대치가 나타나는 시점이 다르게 확인되었다. 이는 시료와 반응용액의 상호반응 과정에서 용존이온의 영향에 의해 화강암시료와 반응용액 사이에 반응속도의 차이가 발생하는 것으로 판단된다.

In order to understand the long-term behavior of radionuclides in granite environments, geochemical behavior characteristics of uranium in granitic host rock of KURT (KAERI Underground Research Tunnel) were investigated by dissolution experiment with different reaction time and solutions. In the dissolution experiment, significantly increased dissolution levels of uranium from granite powder samples were identified during the reaction time of 0~10 days for reaction solutions ($UD-CO_3$ and UD-Bg) containing a large amount of $CO_3{^{2-}}$. On the other hand, significantly increased dissolution levels of uranium were also identified for reaction solutions containing Na and Ca after 60 days. Dissolution of uranium continuously increased in reaction solutions of $UD-CO_3$ ($44.61{\mu}g{\cdot}L^{-1}$), UD-Bg ($41.01{\mu}g{\cdot}L^{-1}$), UD-Na ($26.87{\mu}g{\cdot}L^{-1}$), UD-Ca ($20.26{\mu}g{\cdot}L^{-1}$), UD-CaSi ($17.03{\mu}g{\cdot}L^{-1}$), and UD-Si ($10.47{\mu}g{\cdot}L^{-1}$) in the experimental period of ~270 days. However, after day 270, dissolution of uranium showed a decreasing tendency. This is thought to have occurred because existing uranium in granite samples reached the limit of dissolution by interaction with reaction solutions. Concentrations of dissolved uranium and points of maximum concentration value were found to differ depending on the $CO_3{^{2-}}$ presence in the mixed reaction solution and on the geochemical type of the water. It is estimated that differences in the reaction rate between the granite sample and the reaction solution are due to the influence of dissolved ions in the reaction solution.

키워드

참고문헌

  1. P.E. Mariner, J.H. Lee, E.L. Hardin, F.D. Hansen, G.A. Freeze, A.S. Lord, B. Goldstein, and R.H. Price, "Granite disposal of U.S. high-level radioactive waste", SAND2011-6203, Sandia, California (2011).
  2. J.K. LEE, S.Y. Lee, J.W. Kim, M.H. Baik, and T.J. Park, "Complex behavior of radionuclides in a deep geological environment", KAERI/TR-6547 (2016).
  3. K.S. Kim, C.H. Kang, N.Y. Ko, Y.K. Koh, J.S. Kwan et al., "A safety case of the conceptual disposal system for Pyro-processing high-level waste based on the KURT site (AKRS-16): Safety case synthesis report", KAERI/TR-6726 (2016).
  4. J.K. Lee, M.H. Baik, T.Y. Lee, K.W. Park, and J.T. Jeong, "In situ solute migration experiments in fractured rock at KURT: Installation of experimental system and in situ solute migration experiments", J. Nucl. Fuel Cycle Waste Technol., 11(3), 229-243 (2013). https://doi.org/10.7733/jnfcwt-k.2013.11.3.229
  5. S.Y. Lee, M.H. Baik, and W.J. Cho, "Mineralogical characteristics of calcite observed in the KAERI Underground Research Tunnel", J. Miner. Soc. Korea, 19, 239-246 (2006).
  6. G.Y. Kim, Y.K. Koh, D.S. Bae, and C.S. Kim, "Mineralogical characteristics of fracture-filling minerals from the deep borehole in the Yuseong area for the radioactive waste disposal project", J. Miner. Soc. Korea, 17(1), 99-144 (2004).
  7. W.H. Cho, M.H. Baik, and T.J. Park, "Occurrence characteristics and existing forms of U-Th containing minerals in KAERI Underground Research Tunnel (KURT) granite", Econ. Environ. Geol., 50(2), 117-128 (2017). https://doi.org/10.9719/EEG.2017.50.2.117
  8. K.W. Park, Y.K. Koh, K.S. Kim, and G.Y. Kim, "Fracture zones in deep borehole (DB-1) in KURT", KAERI/TR-4010/2010.
  9. M.H. Baik, M.J. Kang, S.Y. Cho, and J.T. Jeong, "A comparative study for the determination of uranium and uranium isotope in granitic groundwater", J. Radioanal. Nucl. Chem., 304(1), 9-14 (2015). https://doi.org/10.1007/s10967-014-3699-4
  10. J.K. Fredrickson, J.M. Zachara, D.W. Kennedy, M.C. Duff, Y.A. Gorby, S.M.W. Li, and K.M. Krypka, "Reduction of U(VI) in goethite(alpha-FeOOH) suspensions by a dissimilatory metal-reducing bacterium", Geochemica et Cosmochimica Acta, 64(18), 3085-3098 (2000). https://doi.org/10.1016/S0016-7037(00)00397-5
  11. Y. Suzuki, S.D. Kelly, K.M. Kemner, and J.F. Banfield, "Nanometre-size products of uranium bioreduction", Nature, 419, 134 (2002). https://doi.org/10.1038/419134a
  12. N.A. Titayeva, "Nuclear geochemistry" CRC Press, Moscow, 296 (1994).
  13. G.B. Naumov, "The fundamentals of physicochemical model of uranium ore formation", Atomizdat, Moscow (1978).
  14. B.W. Cho, "Uranium concentrations in groundwater of Goesan area, Korea", Econ. Environ. Geol., 50(5), 356-361 (2017).
  15. O. Prat, T. Vercounter, E. Ansoborlo, P. Fichet, P. perret, P. Kurttio, and L. Salonen, "Uranium speciation in drinking water from drilled wells in Southern Finland and its potential links to health effects", Environ. Sci. Technol., 43(10), 3941-3946 (2009). https://doi.org/10.1021/es803658e