DOI QR코드

DOI QR Code

Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory

  • Sadoun, Mohamed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Houari, Mohammed Sid Ahmed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bakora, Ahmed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Mahmoud, S.R. (Department of Mathematics, Faculty of Science, King Abdulaziz University) ;
  • Alwabli, Afaf S. (Department of Biology, Faculty of Science, King Abdulaziz University)
  • Received : 2017.10.15
  • Accepted : 2018.05.12
  • Published : 2018.10.10

Abstract

In this current work a quasi 3D "trigonometric shear deformation theory" is proposed and discussed for the dynamic of thick orthotropic plates. Contrary to the classical "higher order shear deformation theories" (HSDT) and the "first shear deformation theory" (FSDT), the constructed theory utilizes a new displacement field which includes "undetermined integral terms" and presents only three "variables". In this model the axial displacement utilizes sinusoidal mathematical function in terms of z coordinate to introduce the shear strain impact. The cosine mathematical function in terms of z coordinate is employed in vertical displacement to introduce the impact of transverse "normal deformation". The motion equations of the model are found via the concept of virtual work. Numerical results found for frequency of "flexural mode", mode of shear and mode of thickness stretch impact of dynamic of simply supported "orthotropic" structures are compared and verified with those of other HSDTs and method of elasticity wherever considered.

Keywords

References

  1. Abdelaziz, H.H., Ait Amar Meziane, M., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/SCS.2017.25.6.693
  2. Abualnour, M., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  3. Ahmed, A. (2014), "Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory", J. Civ. Struct. Environ., 4(2), 59-64.
  4. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  5. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  6. Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
  7. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  8. Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B, 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035
  9. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/SEM.2018.65.4.453
  10. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/SCS.2015.18.1.187
  11. Bakhadda, B., Bachir Bouiadjra, M., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation", Wind Struct., In Press.
  12. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 21(4), 883-919. https://doi.org/10.12989/scs.2016.21.4.883
  13. Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), "Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects", Steel Compos. Struct., 21(6), 1347-1368. https://doi.org/10.12989/scs.2016.21.6.1347
  14. Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/EAS.2018.14.2.103
  15. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  16. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  17. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  18. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017a), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/SCS.2017.25.3.257
  19. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017b), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/SEM.2017.62.6.695
  20. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  21. Benadouda, M., Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2017), "An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities", Earthq. Struct., 13(3), 255-265. https://doi.org/10.12989/EAS.2017.13.3.255
  22. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., 12(1), 9-34. https://doi.org/10.12989/GAE.2017.12.1.009
  23. Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., 65(1), 19-31. https://doi.org/10.12989/SEM.2018.65.1.019
  24. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  25. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/SSS.2017.19.6.601
  26. Bhimaraddi, A. and Stevens, L.K. (1984), "A higher order theory for free vibration of orthotropic, homogenous, and laminated rectangular plates", J. Appl. Mech., 51(1), 195-198. https://doi.org/10.1115/1.3167569
  27. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/SSS.2017.19.2.115
  28. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  29. Bouderba, B., Houari, M.S.A. and Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/SEM.2016.58.3.397
  30. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73 https://doi.org/10.12989/SEM.2018.66.1.061
  31. Boukhari, A., Ait Atmane, H., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  32. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/SCS.2016.20.2.227
  33. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  34. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386
  35. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/SEM.2016.60.2.313
  36. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  37. Chen, W.C. and Liu, W.H. (1990), "Deflections and free vibrations of laminated plates-Levy-type solutions", J. Mech. Sci., 32(9), 779-793.
  38. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  39. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  40. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
  41. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201.
  42. Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), "A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates", Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/GAE.2017.13.3.385
  43. Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49(4), 795-810. https://doi.org/10.1007/s11012-013-9827-3
  44. Ferreira, A.J.M., Castro, L.M. and Bertoluzza, S. (2009), "A high order collocation method for the static and vibration analysis of composite plates using a first-order theory", Compos. Struct., 89(3), 424-432. https://doi.org/10.1016/j.compstruct.2008.09.006
  45. Fourn, H., Ait Atmane, H., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/SCS.2018.27.1.109
  46. Ghorbanpour Arani, A., Cheraghbak, A. and Kolahchi, R. (2016), "Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory", Struct. Eng. Mech., 60(3), 489-505. https://doi.org/10.12989/sem.2016.60.3.489
  47. Ghugal, Y.M. and Sayyad, A.S. (2011), "Free vibration of thick orthotropic plates using trigonometric shear deformation theory", Lat. Amer. J. Solid. Struct., 8(3), 229-243. https://doi.org/10.1590/S1679-78252011000300002
  48. Ghugal, Y.M. and Shimpi, R.P. (2002), "A review of refined shear deformation theories for isotropic and anisotropic laminated plates", J. Reinf. Plast. Compos., 21(9), 775-813. https://doi.org/10.1177/073168402128988481
  49. Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, A., Tounsi, A. and Mahmoud, S.R. (2017), "A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations", Steel Compos. Struct., 25(6), 717-726. https://doi.org/10.12989/SCS.2017.25.6.717
  50. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  51. Hanna, N.F., Leissa, A.W. (1994), "A higher order shear deformation theory for the vibration of thick plates", J. Sound Vib., 170(4), 545-555. https://doi.org/10.1006/jsvi.1994.1083
  52. Hashemi, S.H. and Arsanjani, M. (2005), "Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates", J. Solid. Struct., 42(3-4), 819-853. https://doi.org/10.1016/j.ijsolstr.2004.06.063
  53. Hebali, H., Bakora, A., Tounsi, A. and Kaci, A. (2016), "A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates", Steel Compos. Struct., 22(3),473-495. https://doi.org/10.12989/SCS.2016.22.3.473
  54. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  55. Hirwani, C.K., Panda, S.K., Mahapatra, S.S., Mandal, S.K. and De, A.K. (2017b), "Dynamic behaviour of delaminated composite plate under blast loading", Proceedings of the ASME 2017 Gas Turbine India Conference, Bengalaru, India, December.
  56. Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mahapatra, S.S. (2017a), "Numerical study and experimental validation of dynamic characteristics of delaminated composite flat and curved shallow shell structure", J. Aerospace Eng., 30(5), 04017045. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000756
  57. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/SCS.2016.22.2.257
  58. Janghorban, M. (2016), "Static analysis of functionally graded rectangular nanoplates based on nonlocal third order shear deformation theory", J. Eng. Appl. Sci., 8(2), 87-100.
  59. Javed, S., Viswanathan, K.K., Aziz, Z.A., Karthik, K. and Lee, J.H. (2016), "Vibration of antisymmetric angle-ply laminated plates under higher order shear theory", Steel Compos. Struct., 22(6), 1281-1299. https://doi.org/10.12989/scs.2016.22.6.1281
  60. Jha, D.K., Kant, T. and Singh, R.K. (2013), "Free vibration response of functionally graded thick plates with shear and normal deformations effects", Compos. Struct., 96, 799-823.
  61. Jones, R.M. (1975), Mechanics of Composite Materials, Scripta Book Co., Washington, D.C., U.S.A.
  62. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of sheardeformable composite beams using a novel simple twounknown beam theory", Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/SEM.2018.65.5.621
  63. Kant, T. (1982), "Numerical analysis of thick plates", Comput. Meth. Appl. Mech. Eng., 31(1), 1-18. https://doi.org/10.1016/0045-7825(82)90043-3
  64. Kant, T. (1993), "A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches", Compos. Struct., 23(4), 293-312. https://doi.org/10.1016/0263-8223(93)90230-N
  65. Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205
  66. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  67. Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/SCS.2018.27.2.201
  68. Karami, B., Janghorban, M. and Tounsi, A. (2018c), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025
  69. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018b), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/SCS.2018.28.1.099
  70. Khandan, R., Noroozi, S., Sewell, P. and Vinney, J. (2012), "The development of laminated composite plate theories: A review", J. Mater. Sci., 47(16), 5901-5910. https://doi.org/10.1007/s10853-012-6329-y
  71. Khetir, H., Bachir Bouiadjra, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/SEM.2017.64.4.391
  72. Kirchhoff, G.R. (1850a), "Uber das gleichgewicht und die bewegung einer elastischen scheibe", J. Reine Angew. Math., 40, 51-88.
  73. Kirchhoff, G.R. (1850b), "Uber die uchwingungen einer kriesformigen elastischen scheibe", Poggendorffs Annalen, 81, 58-264.
  74. Klouche, F., Darcherif, L., Sekkal, M., Tounsi, A. and Mahmoud, S.R. (2017), "An original single variable shear deformation theory for buckling analysis of thick isotropic plates", Struct. Eng. Mech., 63(4), 439-446. https://doi.org/10.12989/SEM.2017.63.4.439
  75. Kreja, I. (2011), "A literature review on computational models for laminated composite and sandwich panels", Cent. Eur. J. Eng., 1(1), 59-80. https://doi.org/10.2478/s13531-011-0005-x
  76. Kshirsagar, S. and Bhaskar, K. (2009), "Free vibration and stability analysis of orthotropic shear-deformable plates using untruncated infinite series superposition method", Thin Wall. Struct., 47(4), 403-411. https://doi.org/10.1016/j.tws.2008.09.003
  77. Laoufi, I., Ameur, M., Zidi, M., Adda Bedia, E.A. and Bousahla, A.A. (2016), "Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory", Steel Compos. Struct., 20(4), 889-912. https://doi.org/10.12989/scs.2016.20.4.889
  78. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  79. Levinson, M. (1980), "An accurate, simple theory of the statics and dynamics of elastic plates", Mech. Res. Commun., 7(6), 343-350. https://doi.org/10.1016/0093-6413(80)90049-X
  80. Levy, M. (1977), "Memoire sur la theorie des plaques elastique planes", J. Math. Pure. Appl., 30, 219-306.
  81. Liew, K.M., Xiang, Y. and Kitipornchai, S. (1995), "Research on thick plate vibration: A literature survey", J. Sound Vib., 180, 163-176. https://doi.org/10.1006/jsvi.1995.0072
  82. Lo, K.H., Christensen, R.M. and Wu, E.M. (1977a), "A high-order theory of plate deformation, Part 1: Homogeneous plates", J. Appl. Mech., 44(4), 663-668. https://doi.org/10.1115/1.3424154
  83. Lo, K.H., Christensen, R.M. and Wu, E.M. (1977b), "A high-order theory of plate deformation, Part 2: Laminated plates", J. Appl. Mech., 44, 669-676. https://doi.org/10.1115/1.3424155
  84. Mahapatra, T.R. and Panda, S.K. (2015), "Thermoelastic vibration analysis of laminated doubly curved shallow panels using nonlinear FEM", J. Therm. Stress., 38(1), 39-68. https://doi.org/10.1080/01495739.2014.976125
  85. Mahapatra, T.R., Kar, V.R. and Panda, S.K. (2015), "Nonlinear free vibration analysis of laminated composite doubly curved shell panel in hygrothermal environment", J. Sandw. Struct. Mater., 17(5), 511-545. https://doi.org/10.1177/1099636215577363
  86. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  87. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "A new higher order shear deformation theory for sandwich and composite laminated plates", Compos. Part B, 43(3), 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017
  88. Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
  89. Mehar, K. and Panda, S.K. (2017), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol.
  90. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", J. Mech. Sci., 133, 319-329.
  91. Meksi, R, Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 1099636217698443.
  92. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
  93. Meradjah, M., Kaci, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2015), "A new higher order shear and normal deformation theory for functionally graded beams", Steel Compos. Struct., 18(3), 793-809. https://doi.org/10.12989/scs.2015.18.3.793
  94. Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38.
  95. Mohammadimehr, M., Rostami, R. and Arefi, M. (2016), "Electroelastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., 20(3), 513-543. https://doi.org/10.12989/scs.2016.20.3.513
  96. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/SSS.2018.21.4.397
  97. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
  98. Murty, A.V.K. (1977), "Higher order theory for vibrations of thick plates", AIAA J., 15(12), 1823-1824. https://doi.org/10.2514/3.7490
  99. Nelson, R.B. and Lorch, D.R. (1974), "A refined theory for laminated orthotropic plates", J. Appl. Mech., 41(1), 177-183. https://doi.org/10.1115/1.3423219
  100. Noor, A.K. and Burton, W.S. (1989), "Assessment of shear deformation theories for multilayered composite plates", Appl. Mech. Rev., 42(1), 1-13. https://doi.org/10.1115/1.3152418
  101. Ozturk, H. (2015), "Vibration analysis of a pre-stressed laminated composite curved beam", Steel Compos. Struct., 19(3), 635-659. https://doi.org/10.12989/scs.2015.19.3.635
  102. Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., 23(3), 339-350. https://doi.org/10.12989/SCS.2017.23.3.339
  103. Raminnea, M., Biglari, H. and Vakili Tahami, F. (2016), "Nonlinear higher order Reddy theory for temperaturedependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture", Struct. Eng. Mech., 59(1), 153-186. https://doi.org/10.12989/sem.2016.59.1.153
  104. Reddy, J.N. (1984), "A refined nonlinear theory of plates with transverse shear deformation", J. Solid. Struct., 20(9-10), 881-896. https://doi.org/10.1016/0020-7683(84)90056-8
  105. Reddy, J.N. (2011), "A general nonlinear third-order theory of functionally graded plates", J. Aerosp. Lightweight Struct., 1, 1-21.
  106. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77.
  107. Sadoune, M., Tounsi, A., Houari, M.S.A. and Adda, B. (2014), "A novel first-order shear deformation theory for laminated composite plates", Steel Compos. Struct., 17(3), 321-338. https://doi.org/10.12989/scs.2014.17.3.321
  108. Sahoo, S.S., Hirwani, C.K., Panda, S.K. and Sen, D. (2017), "Numerical analysis of vibration and transient behaviour of laminated composite curved shallow shell structure: An experimental validation", Scientia Iranica, 25(4), 2218-2232.
  109. Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., 11(2), 289-307. https://doi.org/10.12989/GAE.2016.11.2.289
  110. Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007
  111. Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017a), "A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate", Steel Compos. Struct., 25(4), 389-401. https://doi.org/10.12989/SCS.2017.25.4.389
  112. Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017b), "A new quasi-3D HSDT for buckling and vibration of FG plate", Struct. Eng. Mech., 64(6), 737-749. https://doi.org/10.12989/SEM.2017.64.6.737
  113. Sobhy, M. (2014), "Generalized two-variable plate theory for multi-layered graphene sheets with arbitrary boundary conditions", Acta Mechanica, 225(9), 2521-2538. https://doi.org/10.1007/s00707-014-1093-5
  114. Sobhy, M. and Radwan, A.F. (2017), "A new quasi 3D nonlocal plate theory for vibration and buckling of FGM nanoplates", J. Appl. Mech., 9(1), 1750008. https://doi.org/10.1142/S1758825117500089
  115. Sobhy, M. and Zenkour, A.M. (2018), "Thermal buckling of double-layered graphene system in humid environment", Mater. Res. Express, 5, 015028. https://doi.org/10.1088/2053-1591/aaa2ba
  116. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mechanica, 94(3-4), 195-220. https://doi.org/10.1007/BF01176650
  117. Srinivas, S., Joga Rao, C.V. and Rao, A.K. (1970), "An exact analysis for vibration of simply supported homogeneous and laminated thick rectangular plates", J. Sound Vib., 12(2), 187-199. https://doi.org/10.1016/0022-460X(70)90089-1
  118. Stein, M. and Bains, N.J.C. (1990), "Post buckling behavior of longitudinally compressed orthotropic plates with transverse shearing flexibility", AIAA J., 28(5), 892-895. https://doi.org/10.2514/3.25135
  119. Sturzenbecher, R. and Hofstetter, K. (2011), "Bending of cross-ply laminated composites: an accurate and efficient plate theory based upon models of Lekhnitskii and Ren", Compos. Struct., 93(3), 1078-1088. https://doi.org/10.1016/j.compstruct.2010.09.020
  120. Taibi, F.Z., Benyoucef, S., Tounsi, A., Bachir Bouiadjra, R., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "A simple shear deformation theory for thermo-mechanical behaviour of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 17(2), 99-129. https://doi.org/10.1177/1099636214554904
  121. Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034
  122. Thai, H.T. and Kim, S.E. (2012), "Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory", Appl. Math. Model., 36(8), 3870-3882. https://doi.org/10.1016/j.apm.2011.11.003
  123. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  124. Touratier, M. (1991), "An efficient standard plate theory", J. Eng. Sci., 29(8), 901-916.
  125. Vasil'ev, V.V. (1992), "The theory of thin plates. mechanics of solids", Mekhanika Tverdogo Tela, 27, 22-42.
  126. Vel, S.S., Caccese, V. and Zhao, H. (2005), "Elastic coupling effects in tapered sandwich panels with laminated anisotropic composite facings", J. Compos. Mater., 39(24), 2161-2183. https://doi.org/10.1177/0021998305052033
  127. Wanji, C. and Zhen, W. (2008), "A selective review on recent development of displacement-based laminated plate theories", Recent Patent. Mech. Eng., 1(1), 29-44. https://doi.org/10.2174/2212797610801010029
  128. Wu, C.P. and Chiu, K.H. (2011), "RMVT-based meshless collocation and element-free Galerkin methods for the quasi-3D free vibration analysis of multilayered composite and FGM plates", Compos. Struct., 93(5), 1433-1448. https://doi.org/10.1016/j.compstruct.2010.11.015
  129. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/SSS.2018.21.1.015
  130. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/SSS.2018.21.1.065
  131. Younsi, A., Tounsi, A, Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/GAE.2018.14.6.519
  132. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  133. Zenkour, A.M. and Sobhy, M. (2010), "Thermal buckling of various types of FGM sandwich plates", Compos. Struct., 93(1), 93-102. https://doi.org/10.1016/j.compstruct.2010.06.012
  134. Zenkour, A.M. and Sobhy, M. (2011), "Thermal buckling of functionally graded plates resting on elastic foundations using the trigonometric theory", J. Therm. Stresses, 34(11), 1119-1138. https://doi.org/10.1080/01495739.2011.606017
  135. Zenkour, A.M. and Sobhy, M. (2015), "A simplified shear and normal deformations nonlocal theory for bending of nanobeams in thermal environment", Physica E Low-Dimensional Syst. Nanostruct., 70, 121-128.
  136. Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010a), "Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak's elastic foundations", Acta Mechanica, 212(3-4), 233-252. https://doi.org/10.1007/s00707-009-0252-6
  137. Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010b), "Effect of transverse normal and shear deformation on a fiber-reinforced viscoelastic beam resting on two-parameter elastic foundations", J. Appl. Mech., 2(1), 87-115. https://doi.org/10.1142/S1758825110000482
  138. Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2011), "Bending of a fiber-reinforced viscoelastic composite plate resting on elastic foundations", Arch. Appl. Mech., 81(1), 77-96. https://doi.org/10.1007/s00419-009-0396-9
  139. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), "A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams", Struct. Eng. Mech., 64(2), 145-153. https://doi.org/10.12989/sem.2017.64.2.145
  140. Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermomechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  141. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/SCS.2018.26.2.125

Cited by

  1. A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads vol.7, pp.1, 2020, https://doi.org/10.12989/smm.2020.7.1.027
  2. Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method vol.76, pp.3, 2018, https://doi.org/10.12989/sem.2020.76.3.413
  3. Dynamic stability analysis of a rotary GPLRC disk surrounded by viscoelastic foundation vol.24, pp.3, 2018, https://doi.org/10.12989/gae.2021.24.3.267
  4. Mathematical approach for the effect of the rotation, the magnetic field and the initial stress in the non-homogeneous an elastic hollow cylinder vol.79, pp.5, 2018, https://doi.org/10.12989/sem.2021.79.5.593