테라헤르츠파 자기공명 기반 생체 내 신호 전달을 통한 치료 응용

  • Published : 2018.09.30

Abstract

Keywords

References

  1. P. Stavroulakis, Biological Effects of Electromagnetic Fields, Springer-Verlag Berlin Heidelberg 2003.
  2. G. J. Wilmink, J. E. Grundt, "Invited review article: Current state of research on biological effects of terahertz radiation", J. Infrared Milli. Terahz. Waves., vol. 32, pp. 1074-1122, 2011. https://doi.org/10.1007/s10762-011-9794-5
  3. R. A. Bradshaw, E. A. Dennis, Handbook of Cell Signaling, Academic Press, Elsevier Science (USA), 2003.
  4. R. H. W. Funk, T. Monsees, and N. Ozkucur, "Electromagnetic effects - From cell biology to medicine", Progress in Histochemistry and Cytochemistry, vol. 43, pp. 177-264, 2009. https://doi.org/10.1016/j.proghi.2008.07.001
  5. F. S. Barnes, B. Greenebaum, Handbook of Biological Effects of Electromagnetic Fields: Bioengineering and Biophysical Aspects of Electromagnetic Fields, 3rd-edition, CRC Press, Taylor & Francis Group, 2007.
  6. F. S. Barnes, B. Greenebaum, Handbook of Biological Effects of Electromagnetic Fields: Biological and Medical Aspects of Electromagnetic Fields, 3rd-edition, CRC Press, Taylor & Francis Group, 2007.
  7. P. Vecchia, R. Matthes, G. Ziegelberger, J. Lin, R. Saunders, and A. Swerdlow, "Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz-300 GHz)", International Commission on Non-Ionizing Radiation Protection 2009.
  8. L. Giuliani, M. Soffritti, "Non-thermal effects and mechanisms of interaction betweenelectromagnetic fields and livingmatter", National Institute for the Study and Control of Cancer and Environmental Diseases "Bernardino Ramazzini" Bologna, Italy, 2010.
  9. J. C. Lin, Electromagnetic Fields in Biological Systems, 2012 by Taylor & Francis Group, LLC.
  10. G.-S. Park, Y. H. Kim, H. W. Han, J. K. Han, J. W. Ahn, J.-H. Son, W.-Y. Park, and Y. U. Jeong, Convergence of Terahertz Sciences in Biomedical Systems, Springer Science Business Media Dordrecht 2012.
  11. H.-J. Song, T. Nagatsuma, Handbook of Terahertz Technologies Devices and Applications, CRC Press Taylor & Francis Group, LLC 2015.
  12. E. A. Permyakov, R. H. Kretsinger, Calcium Binding Proteins, Published by John Wiley & Sons, Inc., Hoboken, New Jersey. 2011.
  13. J. D. Enderle, J. D. Bronzino, Introduction to Biomedical Engineering, 3rd Academic Press Elsevier Inc., 2012.
  14. M. S. Markov, Electromagnetic Fields in Biology and Medicine, CRC Press Taylor & Francis Group, LLC 2015.
  15. M. S. Markov, "Pulsed electromagnetic field therapy history, state of the art and future", The Environmentalist, vol. 27, no. 4, pp. 465-475, Dec. 2007. https://doi.org/10.1007/s10669-007-9128-2
  16. M. Markov, "Nonthermal mechanism of interactions between electromagnetic fields and biological systems: A calmodulin example", The Environmentalist, vol. 31, pp. 114-120, 2011. https://doi.org/10.1007/s10669-011-9321-1
  17. B. Strauch, C. Herman, R. Dabb, L. J. Ignarro, and A. A. Pilla, "Evidence-based use of pulsed electromagnetic field therapy in clinical plastic surgery", Aesthetic Surgery Journal, vol. 29, no. 2, pp. 135-143, Mar./Apr. 2009. https://doi.org/10.1016/j.asj.2009.02.001
  18. X. Chen, J. F. Kolb, R. J. Swanson, K. H. Schoenbach, and S. J. Beebe, "Apoptosis initiation and angiogenesis inhibition: melanoma targets for nanosecond pulsed electric fields", Pigment Cell Melanoma Res., vol. 23, pp. 554-563, 2010. https://doi.org/10.1111/j.1755-148X.2010.00704.x
  19. C. Rohde, A. Chiang, O. Adipoju, D. Casper, and A. A. Pilla, "Effects of pulsed electromagnetic fields on interleukin-$1{\beta}$ and postoperative pain: A double-blind, placebo-controlled, pilot study in breast reduction patients", Plastic and Reconstructive Surgery, vol. 125, no. 6, pp. 1620-1629, Jun. 2010. https://doi.org/10.1097/PRS.0b013e3181c9f6d3
  20. J. Zheng, M. C. Trudeau, Handbook of Ion Channels, CRC Press Taylor & Francis Group, LLC 2015.
  21. R. Pethig, Dielectrophoresis-Theory, Methodology and Biological Applications, (C) 2017 John Wiley & Sons, Ltd.
  22. C. E. Canman, D. S. Lim, K. A. Cimprich, Y. Taya, K. Tamai, K. Sakaguchi, E. Appella, M. B. Kastan, and J. D. Siliciano, "Activation of the ATM Kinase by Ionizing Radiation and Phosphorylation of p53", Science, vol. 281, pp. 1677-1679, 1998. https://doi.org/10.1126/science.281.5383.1677
  23. S. H. Min, O. J. Kwon, M. Sattorov, H. C. Jung, I. K. Baek, S. T. Kim, J. Y. Jeong, J. M. Jang, D. P. Hong, R. Bhattacharya, R. K. Barik, A. Bera, S. H. Park, J. H. Ahn, S. H. Lee, Y. J. Yoon, and G. S. Park, "Effects for electronics exposed to high power microwave on a basis of relativistic backward wave oscillator at X-band", Microwave tubes and applications, Journal of Electromagnetic Waves And Applications, vol. 31, no. 17, pp. 1875-1901, 2017. https://doi.org/10.1080/09205071.2017.1354728
  24. M. S. Markov, A. A. Pilla, "Weak static magnetic field modulation of myosin phosphorylation in a cell-free preparation: calcium dependence", Bioelectrochemistry and Bioenergetics, vol. 43 no. 2, pp. 233-238, 1997. https://doi.org/10.1016/S0302-4598(96)02226-X
  25. A. A. Pilla, D. J. Muehsam, M. S. Markov, and B. F. Sisken, "EMF signals and ionrligand binding kinetics: prediction of bioeffective waveform parameters", Bioelectrochemistry and Bioenergetics, vol. 48, no. 1, pp. 27-34, 1999. https://doi.org/10.1016/S0302-4598(98)00148-2
  26. C. L. M. B. Koch, M. Sommarin, B. R. R. Persson, L. G. Salford, and J. L. Eberhardt, "Interaction between weak low frequency magnetic fields and cell membranes", Bioelectromagnetics, vol. 24, no. 6, pp. 395-402, 2003. https://doi.org/10.1002/bem.10136
  27. M. Grossman, B. Born, M. Heyden, D. Tworowski, G. B. Fields, I. Sagi and M. Havenith, "Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site", Nature Structural & Molecular Biology, vol. 18 no. 10, pp. 1102-1108, 2011. https://doi.org/10.1038/nsmb.2120
  28. D.-H. Choi, H. J. Son, S. H. Jung, J. H. Park, W.-Y. Park, O. S. Kwon, and G.-S. Park, "Dielectric relaxation change of water upon phase transition of a lipid bilayer probed by terahertz time domain spectroscopy", The Journal of Chemical Physics, vol. 137, no. 17, 2012.
  29. K. Shiraga, T. Suzuki, N. Kondo, K. Tanaka, and Y. Ogawa, "Hydration state inside HeLa cell monolayer investigated with terahertz spectroscopy", Appl. Phys. Lett., vol. 106, no. 25, 2015.
  30. K. Meister, S. Ebbinghaua, Y. Xu, J. G. Duman, A. DeVries, M. Gruebele, D. M. Leitner, and M. Havenith, "Long-range protein-water dynamics in hyperactive insect antifreeze proteins", Proceedings of the National Academy of Sciences (PNAS), vol. 110, no. 5, pp. 1617-1622, 2013. https://doi.org/10.1073/pnas.1214911110
  31. K. Meister, S. Strazdaite, A. L. DeVries, S. Lotzea, L. L. C. Olijvec, I. K. Voets, and H. J. Bakker, "Observation of ice-like water layers at an aqueous protein surface", Proceedings of the National Academy of Sciences (PNAS), vol. 111, no. 5, pp. 17732-17736, 2014. https://doi.org/10.1073/pnas.1414188111
  32. H. J. Son, D.-H. Choi, S. H. Jung, J. H. Park, and G.-S. Park, "Dielectric relaxation of hydration water in the Dickerson-drew duplex solution probed by THz spectroscopy", Chemical Physics Letters, vol. 627, pp. 134-139, 2015. https://doi.org/10.1016/j.cplett.2015.03.054
  33. K. N. Woods, J. Pfeffer, "Using THz Spectroscopy, evolutionary network analysis methods, and MD simulation to map the evolution of allosteric communication pathways in c-Type lysozymes", Mo.l Biol. Evol., vol. 33, no. 1, pp. 40-61, 2015. https://doi.org/10.1093/molbev/msv178
  34. Z. Guo, F. Yang, Surfaces and Interfaces of Biomimetic Superhydrophobic Materials, Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany, ISBN: 978-3-527-80671-3, 2018.
  35. L. Tang, T. M. Gamal El-Din, J. Payandeh, G. Q. Martinez, T. M. Heard, T. Scheuer, N. Zheng, and W. A. Catterall, "Structural basis for Ca21 selectivity of a voltage-gated calcium channel", Nature, vol. 505, pp. 56-62, 12775, 2014. https://doi.org/10.1038/nature12775
  36. L. Tang, T. M. Gamal El-Din, T. M. Swanson, D. C. Pryde, T. Scheuer, N. Zheng, and W. A. Catterall, "Structural basis for inhibition of a voltage-gated $Ca^{2+}$ channel by $Ca^{2+}$ antagonist drugs", Nature, vol. 537, pp. 117-132, 19102, 2016. https://doi.org/10.1038/nature19102
  37. E. C. Schwarz, B. Qu, and M. Hoth, "Calcium, cancer and killing: The role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells", Biochimica et Biophysica Acta, vol. 1833, no. 7, pp. 1603-1611, 2013. https://doi.org/10.1016/j.bbamcr.2012.11.016
  38. M. D. Wellenstein, K. E. de Visser1, "Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape", Immunity vol. 48, no. 3, pp. 399-416, 2018. https://doi.org/10.1016/j.immuni.2018.03.004
  39. H. J. Kang, M.-K. Hong, S. K. Jung, and L. S. Kim, "The role of heat shock proteins 70/90 as potential molecular therapeutic targets in breast cancer", Journal of Breast Cancer, vol. 10, no. 4, pp. 231-240, 2007. https://doi.org/10.4048/jbc.2007.10.4.231
  40. 한지숙, "항암제 및 퇴행성 신경질환 치료제로써의 Hsp90 억제제 개발 동향", 생화학분자생물학뉴스, 2007년 12월호. (Biochemistry and Molecular Biology News, 2007)
  41. M. Waza, H. Adachi, M. Katsuno, M. Minamiyama, F. Tanaka, M. Doyu, and G. Sobue, "Modulation of Hsp90 function in neurodegenerative disorders: A moleculartargeted therapy against disease-causing protein", Journal of Molecular Medicine, vol. 84, no. 8, pp. 635-646, 2006. https://doi.org/10.1007/s00109-006-0066-0
  42. J. Zou, Y. Guo, T. Guettouche, D. F. Smith, and R. Voellmy, "Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 Complex) that forms a stress-sensitive complex with HSF1", Cell, vol. 94, no. 4, pp. 471-480, 1998. https://doi.org/10.1016/S0092-8674(00)81588-3
  43. F. E. Murray, J. P. Landsberg, R. J. Williams, M. M. Esiri, F. Watt, "Elemental analysis of neurofibrillary tangles in Alzheimer's disease using proton-induced X-ray analysis", Ciba Foundation Symposium. 1992.
  44. K. Sennvik, E. Benedikz, J. Fastbom, E. Sundstrom, B. Winblad, and M. Ankarcrona, "Calcium ionophore A23187 specifically decreases the secretion of beta-secretase cleaved amyloid precursor protein during apoptosis in primary rat cortical cultures", Journal of Neuroscience Research, vol. 63, no. 5, pp. 429-437, 2001. https://doi.org/10.1002/1097-4547(20010301)63:5<429::AID-JNR1038>3.0.CO;2-U
  45. H. W. Querfurth, D. J. Selkoe, "Calcium ionophore increases amyloid beta peptide production by cultured cells", Biochemistry, vol. 33, no. 15, pp. 4550-4561, 1994. https://doi.org/10.1021/bi00181a016
  46. J. N. Keller, K. B. Hanni, and W. R. Markesbery, "Impaired proteasome function in Alzheimer's disease", Journal of Neurochemistry, vol. 75, no. 1, pp. 436-439, 2000. https://doi.org/10.1046/j.1471-4159.2000.0750436.x
  47. A. Ciechanover, P. Brundin, "The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg", Neuron, vol. 40, no. 2, pp. 427-446, 2003. https://doi.org/10.1016/S0896-6273(03)00606-8
  48. U. Dreses-Werringloer, J. C. Lambert, V. Vingtdeux, H. Zhao, H. Vais, A. Siebert, A. Jain, J. Koppel, A. Rovelet-Lecrux, D. Hannequin, F. Pasquier, D. Galimberti, E. Scarpini, D. Mann, C. Lendon, D. Campion, P. Amouyel, P. Davies, J. K. Foskett, F. Campagne, and P. Marambaud, "A polymorphism in CALHM1 influences $Ca^{2+}$ homeostasis, $A{\beta}$ levels, and Alzheimer's disease risk", Cell, vol. 133, pp. 1149-1161, 2008. https://doi.org/10.1016/j.cell.2008.05.048
  49. K.-H. Cheun, D. Shineman, M. Muller, C. Cardenas, L. Mei, J. Yang, T. Tomita, T. Iwatsubo, V. M. Lee, and J. K. Foskett, "Mechanism of $Ca^{2+}$ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating", Neuron, vol. 58, pp. 871-883, 2008. https://doi.org/10.1016/j.neuron.2008.04.015
  50. S. S. Leal, C. M. Gomes, "Calcium dysregulation links ALS defective proteins and motor neuron selective vulnerability", Front Cell Neuroscience, vol. 9, no. 225, 2015.
  51. J. Grosskreutza, L. Van Den Bosch, and B. U. Keller, "Calcium dysregulation in amyotrophic lateral sclerosis", Cell Calcium, vol. 47, no. 2, pp. 165-174, 2010. https://doi.org/10.1016/j.ceca.2009.12.002
  52. Y. Tamaki, A. Shodai, T. Morimura, R. Hikiami, S. Minamiyama, T. Ayaki, I. Tooyama, Y. Furukawa, R. Takahashi, and M. Urushitani, "Elimination of TDP-43 inclusions linked to amyotrophic lateral sclerosis by a misfolding-specific intrabody with dual proteolytic signals", Scientific Reports, vol. 8, no. 1, pp. 6030, 2018. https://doi.org/10.1038/s41598-018-24463-3
  53. Y. H. Jeong, J. P. Ling, S. Z. Lin, A. N. Donde, K. E. Braunstein, E. Majounie, B. J. Traynor, K. D. LaClair, T. E. Lloyd, and P. C. Wong, "Tdp-43 cryptic exons are highly variable between cell type", Molecular Neurodegeneration, vol. 12, no. 1, pp. 13, 2017. https://doi.org/10.1186/s13024-016-0144-x
  54. G. De Marco, A. Lomartire, G. Mandili, E. Lupino, B. Buccinna, C. Ramondetti, C. Moglia, F. Novelli, M. Piccinini, M. Mostert, M. T. Rinaudo, A. Chio, and A. Calvo, "Reduced cellular $Ca^{2+}$ availability enhances TDP-43 cleavage by apoptotic caspases", Biochimica et Biophysica Acta, vol. 1843, no. 4, pp. 725-734, 2014. https://doi.org/10.1016/j.bbamcr.2014.01.010
  55. Q. Li, M. Yokoshi, H. Okada, and Y. Kawahara, "The cleavage pattern of TDP-43 determines its rate of clearance and cytotoxicity", Nature Communications, vol. 6, no. 6183, 2015.
  56. N. M. Ashpole, W. Song, T. Brustovetsky, E. A. Engleman, N. Brustovetsky, T. R. Cummins, and A. Hudmon, "Calcium/calmodulin-dependent protein kinase II (CaMKII) inhibition induces neurotoxicity via dysregulation of glutamate/calciums ignaling and hyperexcitability", J. Biol. Chem., vol. 287, vo. 11, pp. 8495-8506, 2012. https://doi.org/10.1074/jbc.M111.323915
  57. C. A. Valencia, W. Ju, and R. Liu, "Matrin 3 is a $Ca^{2+}$/calmodulin-binding protein cleaved by caspases", Biochem. Biophys. Res. Commun., vol. 361 no. 2, pp. 281-286, 2007. https://doi.org/10.1016/j.bbrc.2007.06.156
  58. S. Oddo, "The ubiquitin-proteasome system in Alzheimer's disease", Journal of Cellular and Molecular Medicine, vol. 12, no. 2, pp. 363-373, 2008. https://doi.org/10.1111/j.1582-4934.2008.00276.x
  59. A. Hershko, A. Ciechanover, "The ubiquitin system", Annual Review of Biochemistry, vol. 67, pp. 425-479, 1998. https://doi.org/10.1146/annurev.biochem.67.1.425
  60. A. Hershko, A. Ciechanover, and A. Varshavsky, "The ubiquitin system", Nature Medicine, vol. 6, no. 10, pp. 1073-1081, 2000. https://doi.org/10.1038/80384
  61. C. M. Pickart, "Back to the future with ubiquitin", Cell, vol. 116, pp. 181-190, 2004. https://doi.org/10.1016/S0092-8674(03)01074-2
  62. K. D. Wilkinson, "Ubiquitin: A nobel protein", Cell, vol. 119, pp. 741-745, 2004.
  63. G. Nalepa, M. Rolfe, and J. W. Harper, "Drug discovery in the ubiquitin-proteasome system", Nature Reviews Drug Discovery, vol. 5, pp. 596-613, 2006. https://doi.org/10.1038/nrd2056
  64. Y. Lee, C. K. Min, T. G. Kim, H. K. Song, Y. Lim, D. Kim, K. Shin, M. Kang, J. Y. Kang, H, S. Youn, J. G. Lee, J. Y. An, K. R. Park, J. J. Lim, J. H. Kim, J. H. Kim, Z. Y. Park, Y. S. Kim, J. Wang, D. H. Kim, and S. H. Eom, "Structure and function of the N terminal domain of the human mitochondrial calcium uniporter", EMBO Reports, vol. 16, no. 10 pp. 1318-1333, 2015. https://doi.org/10.15252/embr.201540436
  65. S. K. Lee, S. Shanmughapriya, M. C. Y. Mok, Z. Dong, D. Tomar, E. Carvalho, S. Rajan, M. S. Junop, M. Madesh, and P. B. Stathopulos, "Structural insights into mitochondrial calcium uniporter regulation by divalent cations", Cell Chemical Biology, vol. 23, no.9, pp. 1157-116, 2016. https://doi.org/10.1016/j.chembiol.2016.07.012
  66. J. Yoo, M. Wu, Y. Yin, M. A. Herzik Jr, G. C. Lander, S.-Y. Lee, "Cryo-EM structure of a mitochondrial calcium uniporter", Science, vol. 28, 2018.
  67. N. X. Nguyen, J.-P. Armache, C. Lee, Y. Yang, W. Zeng, V. K. Mootha, Y. Cheng, X.-C. Bai and Y. Jiang, "Cryo-EM structure of a fungal mitochondrial calcium uniporter", Nature, vol. 559, pp. 570-574, 2018. https://doi.org/10.1038/s41586-018-0333-6
  68. T. S. Luongo, J. P. Lambert, P. Gross, M. Nwokedi, A. A. Lombardi, S. Shanmughapriya, A. C. Carpenter, D. Kolmetzky, E. Gao, J. H. van Berlo, E. J. Tsai, J. D. Molkentin, X. Chen, M. Madesh, S. R. Houser, and J. W. Elrod, "The mitochondrial $Na^+/Ca^{2+}$ exchanger is essential for $Ca^{2+}$ homeostasis and viability", Nature, vol. 545, no. 7652, pp. 93-97, 2017. https://doi.org/10.1038/nature22082