DOI QR코드

DOI QR Code

Studies on Antioxidant and Whitening Activities of Salix gracilistyla Extracts

갯버들 추출물의 항산화 및 미백활성 연구

  • Jeong, Yong-Un (Department of Integrated Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University) ;
  • Park, Young-Jin (Department of Integrated Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University)
  • 정용운 (건국대학교 의료생명대학 바이오융합과학부, 의료생명연구소) ;
  • 박영진 (건국대학교 의료생명대학 바이오융합과학부, 의료생명연구소)
  • Received : 2018.08.03
  • Accepted : 2018.09.18
  • Published : 2018.09.30

Abstract

This study was carried out to evaluate the antioxidant and whitening activities of Salix gracilistyla extracts. The total polyphenol contents of the extracts were 142.60-151.95 mg GAE/g and total flavonoid contents were 83.43-92.60 mg CE/g. In 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, the 30% methanol extract showed the highest antioxidant activity ($IC_{50}$; $19.68{\mu}g/mL$). Tyrosinase inhibitory activity was similar in all four solvent extracts, and the highest inhibitory activity (35.18%) was obtained at a concentration of $200{\mu}g/mL$ of 30% ethanol extract. In addition, methanol extracts did not affect cell viability at all treatment concentrations and were found to significantly reduce the melanin content of B16F10 cells. As a result, it is considered that Salix gracilistyla extracts can be used as an effective cosmetic ingredient having antioxidant and whitening activity.

본 연구는 갯버들 추출물의 항산화 활성 및 미백활성을 평가하기 위해 수행하였다. 갯버들 줄기의 용매별 추출물의 총 폴리페놀 함량은 142.60-151.95 mg GAE/g, 총 플라보노이드 함량은 83.43-2.60 mg CE/g으로 확인되었다. 갯버들 줄기의 용매별 추출물의 1,1-diphenyl-2-picrylhydrazyl (DPPH) 라디칼 소거활성을 평가한 결과 30% 메탄올 추출물이 가장 높은 항산화 활성($IC_{50}$; $19.68{\mu}g/mL$)을 나타내었다. Tyrosinase 억제활성은 4종류의 용매 추출물 모두 유사하게 평가되었으며, 30% 에탄올 추출물 $200{\mu}g/mL$ 농도가 가장 높은 억제활성(35.18%)을 나타내었다. 갯버들 추출물 중 메탄올 추출물은 B16F10 세포주의 생존율에 영향을 미치지 않은 농도에서 유의적으로 멜라닌 생합성을 저해하는 것으로 확인되었다. 결과적으로 갯버들 추출물은 항산화 및 미백활성을 가지는 효과적인 화장품 성분으로 사용 가능할 것으로 사료된다.

Keywords

References

  1. S. Ito and K. Wakamatsu, Quantitative analysis of eu- melanin and pheomelanin in humans, mice, and other animals: a comparative review, Pigment cell res., 16, 523 (2003). https://doi.org/10.1034/j.1600-0749.2003.00072.x
  2. Y. M. Yoon, S. H. Bae, S. K. An, Y. B. Choe, K. J. Ahn, and I. S. An, Effects of ultraviolet radiation on the skin and skin cell signaling pathways, Kor. J. Aesthet. Cosmetol., 11, 417 (2013).
  3. J. W. Kim, H. I. Kim, J. H. Kim, O. C. Kwon, E. S. Son, C. S. Lee, and Y. J. Park, Effects of ganodermanondiol, a new melanogenesis inhibitor from the medicinal mushroom Ganoderma lucidum, Int. J. Mol. Sci., 17, 1798 (2016). https://doi.org/10.3390/ijms17111798
  4. M. Brenner and V. J. Hearing, The protective role of melanin against UV damage in human skin, Photochem. Photobiol., 84, 539 (2008). https://doi.org/10.1111/j.1751-1097.2007.00226.x
  5. S. Parvez, M. Kang, H. S. Chung, C. Cho, M. C. Hong, M. K. Shin, and H. Bae, Survey and mechanism of skin depigmenting and lightening agents, Phytother. Res., 20, 921 (2006). https://doi.org/10.1002/ptr.1954
  6. N. Baurin, E. Arnoult, T. Scior, Q. T. Do, and P. Bernard, Preliminary screening of some tropical plants for anti-tyrosinase activity, J. Ethnopham., 82, 155 (2002). https://doi.org/10.1016/S0378-8741(02)00174-5
  7. V. J. Hearing and K. Tsukamoto, Enzymatic control of pigmentation in mammals, FASEB J., 5, 2902 (1991). https://doi.org/10.1096/fasebj.5.14.1752358
  8. G. Prota, The chemistry of melanins and melanogenesis, Prog. Chem. Org. Nat. Prod., 64, 93 (1995).
  9. K. Maeda and M. Fukuda, Arbutin: Mechanism of its depigmenting action in human melanocyte culture, J. Pharmacol. Exp. Ther., 276, 765 (1996).
  10. J. Cabanes, S. Chazarra, and F. Garcia-Carmona, Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase, J. Pharm. Pharmacol., 46, 982 (1994). https://doi.org/10.1111/j.2042-7158.1994.tb03253.x
  11. A. Palumbo, M. d'Ischia, G. Misuraca, and G. Prota, Mechanism of inhibition of melanogenesis by hydro- quinone, Biochim. Biophys. Acta, 1073, 85 (1991). https://doi.org/10.1016/0304-4165(91)90186-K
  12. T. S. Chang, An updated review of tyrosinase inhibitors, Int. J. Mol. Sci., 10, 2440 (2009). https://doi.org/10.3390/ijms10062440
  13. D. Mabberley, Mabberley's plant-book: a portable dictionary of plants, their classification and uses, Cambridge University Press, Cambridge (2017).
  14. M. H. Kim, Antioxidant activity and anti-inflammatory effects of Salix koreensis Andersson branches extracts, J. Korean Soc. Food Cult., 33, 104 (2018).
  15. Q. Du, G. Jerz, L. Shen, L. Xiu, and P. Winterhalter, Isolation and structure determination of a lignan from the bark of Salix alba, Nat. Prod. Res., 21, 451 (2007). https://doi.org/10.1080/14786410601083845
  16. A. Freischmidt, G. Jrgenliemk, B. Kraus, S. N. Okpanyi, J. Mller, O. Kelber, D. Weiser, and J. Heilmann, Contribution of flavonoids and catechol to the reduction of ICAM-1 expression in endothelial cells by a standardised willow bark extract, Phytomedicine, 19, 245 (2012). https://doi.org/10.1016/j.phymed.2011.08.065
  17. R. S. Shivatare, M. L. Phopase, D. H. Nagore, S. U. Nipanikar, and S. S. Chitlange, Development and validation of HPLC analytical protocol for quantification of salicin from Salix alba L., Inventi Rapid: Pharm Analysis Quality Assurance, 2015, 61 (2015).
  18. M. S. Alam, G. Kaur, Z. Jabbar, K. Javed, and M. Athar, Evaluation of antioxidant activity of Salix caprea flowers, Phytother. Res., 20, 479 (2006). https://doi.org/10.1002/ptr.1882
  19. X. Li, Z. Liu, X. F. Zhang, L. J. Wang, Y. N. Zheng, C. C. Yuan, and G. Z. Sun, Isolation and characterization of phenolic compounds from the leaves of Salix matsudana, Molecules, 13, 1530 (2008). https://doi.org/10.3390/molecules13081530
  20. L. K. Han, M. Sumiyoshi, J. Zhang, M. X. Liu, X. F. Zhang, Y. N. Zheng, H. Okuda, and Y. Kimura, Anti-obesity action by polyphenols of Salix matsudana in high fat-diet treated rodent animals, Phytother. Res., 17, 1188 (2003). https://doi.org/10.1002/ptr.1404
  21. S. Sultana and M. Saleem, Salix caprea inhibits skin carcinogenesis in murine skin: inhibition of oxidative stress, ornithine decarboxylase activity and DNA synthesis, J. Ethnopharmacol., 91, 267 (2003).
  22. S. K. Kim, Ph. D. Dissertation, Nambu Univ., Gwangju, Korea (2017).
  23. J. H. Seo, Master's Thesis, Andong National Univ., Andong, Korea (2001)
  24. V. Dewanto, X. Wu, K. K. Adom, and R. H. Liu, Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity, J. Agric. Food Chem., 50, 3010 (2002). https://doi.org/10.1021/jf0115589
  25. G. M. Sulaiman, N. N. Hussien, T. R. Marzoog, and H. A. Awad, Phenolic content, antioxidant, antimicrobial and cytotoxic activities of ethanolic extract of Salix alba, Am. J. Biochem. Biotechnol., 9, 41 (2013). https://doi.org/10.3844/ajbbsp.2013.41.46
  26. R. M. Costa, A. S. Magalhaes, J. A. Pereira, P. B. Andrade, P. Valentao, M. Carvalho, and B. M. Silva, Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: a comparative study with green tea (Camellia sinensis), Food Chem. Toxicol., 47, 860 (2009). https://doi.org/10.1016/j.fct.2009.01.019
  27. M. S. Stankovic, N. Niciforovic, M. Topuzovic, and S. Solujic, Total phenolic content, flavonoid concentrations and antioxidant activity, of the whole plant and plant parts extracts from Teucrium montanum L. var. montanum, f. supinum (L.) Reichenb, Biotechnol. Biotechnol. Equip., 25, 2222 (2011). https://doi.org/10.5504/BBEQ.2011.0020
  28. P. J. Tsai, T. H. Tsai, C. H. Yu, and S. C. Ho, Comparison of NO-scavenging and NO-suppressing activities of different herbal teas with those of green tea, Food Chem., 103, 181 (2007). https://doi.org/10.1016/j.foodchem.2006.08.013
  29. C. C. Wei, C. W. Yu, P. L. Yen, H. Y. Lin, S. T. Chang F. L. Hsu, and V. H. Liao, Antioxidant activity, delayed aging, and reduced amyloid-${\beta}$ toxicity of methanol extracts of tea seed pomace from Camellia tenuifolia, J. Agric. Food Chem., 62, 10701 (2014). https://doi.org/10.1021/jf503192x
  30. Y. S. Velioglu, G. Mazza, L. Gao, and B. D. Oomah, Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products, J. Agric. Food Chem., 46, 4113 (1998). https://doi.org/10.1021/jf9801973
  31. N. Nakatani, Recent advances in the study on natural antioxidants, Nippon Shokuhin Kogyo Gakkaishi, 37, 569 (1990). https://doi.org/10.3136/nskkk1962.37.7_569
  32. K. Nozaki, Current aspect and future condition of phytogenic antioxidants, Fragrance Journal, 6, 99 (1986).
  33. A. Slominski, D. J. Tobin, S. Shibahara, and J. Wortsman, Melanin pigmentation in mammalian skin and its hormonal regulation, Physiol. Rev., 84, 1155 (2004). https://doi.org/10.1152/physrev.00044.2003
  34. Y. H. Cao and R. H. Cao, Angiogenesis inhibited by drinking tea, Nature, 398, 381 (1999). https://doi.org/10.1038/18793
  35. H. L. Madsen and G. Bertelsen, Spices as antioxidants, Trends Food Sci. Technol., 6, 271 (1995). https://doi.org/10.1016/S0924-2244(00)89112-8
  36. F. Shahidi, P. K. Janitha, and P. D. Wanasundara, Phenolic antioxidants, Crit. Rev. Food Sci. Nutr., 32, 67 (1992). https://doi.org/10.1080/10408399209527581
  37. M. P. Kahkonen, A. I. Hopia, H. J. Vuorela, J. P. Rauha, K. Pihlaja, T. S. Kujala, and M. Heinonen, Antioxidant activity of plant extracts containing phenolic compounds, J. Agric. Food Chem., 47, 3954 (1999). https://doi.org/10.1021/jf990146l