References
- W. Zheng, "Multichannel EEG-Based Emotion Recognition via Group Sparse Canonical Correlation Analysis," IEEE Trans. Cogn. Develop. Syst, vol.9, no.3, pp. 281-290, 2017. DOI:10.1109/TCDS.2016.2587290
- A. Jalilifard, E. B. Pizzolato and M. K. Islam, "Emotion classification using single-channel scalp-EEG recording," in Proc. of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 845-849, 2016. DOI:10.1109/EMBC.2016.7590833
- M. Li and B. L. Lu, "Emotion classification based on gamma-band EEG," in Proc. of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1223-1226, 2009. DOI:10.1109/IEMBS.2009.5334139
- B. Krisnandhika, A. Faqih, P. D. Pumamasari and B. Kusumoputro, "Emotion recognition system based on EEG signals using relative wavelet energy features and a modified radial basis function neural networks," in Proc. of the 2017 International Conference on Consumer Electronics and Devices (ICCED), pp. 50-54, 2017. DOI:10.1109/ICCED.2017.8019990
- M. Z. Ahmad, M. Saeed, S. Saleem and A. M. Kamboh, "Seizure detection using EEG: A survey of different techniques," in Proc. of the 2016 International Conference on Emerging Technologies (ICET), pp. 1-6, 2016. DOI:10.1109/ICET.2016.7813209
- Y. Yuan, G. Xun, F. Ma, Q. Suo, H. Xue, K. Jia and A. Zhang, "A novel channel-aware attention framework for multi-channel EEG seizure detection via multi-view deep learning," in Proc. of the 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp. 206-209, 2018. DOI:10.1109/BHI.2018.8333405
- L. Boubchir, B. Daachi and V. Pangracious, "A review of feature extraction for EEG epileptic seizure detection and classification," in Proc. of the 2017 40th International Conference on Telecommunications and Signal Processing (TSP), pp. 456-460, 2017. DOI:10.1109/TSP.2017.8076027
- M. Bachmann, J. Lass and H. Hinrikus, "Single channel EEG analysis for detection of depression," Biomed Signal Process Control, vol.31, pp. 391-397, 2017. DOI:10.1016/j.bspc.2016.09.010
- M. Z. Ilyas, P. Saad, M. I. Ahmad and A. R. I. Ghani, "Classification of EEG signals for brain-computer interface applications: Performance comparison," in Proc. of the 2016 International Conference on Robotics, Automation and Sciences (ICORAS), pp. 1-4, 2016. DOI:10.1109/ICORAS.2016.7872610
- B. Abibullaev, "Learning suite of kernel feature spaces enhances SMR-based EEG-BCI classification," in Proc. of the 2017 5th International Winter Conference on Brain-Computer Interface (BCI), pp. 55-59, 2017. DOI:10.1109/IWW-BCI.2017.7858158
- P. Tan, W. S. and L. Yu, "Applying Extreme Learning Machine to classification of EEG BCI," in Proc. of the 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 228-232, 2016. DOI:10.1109/CYBER.2016.7574827
- N. Jatupaiboon, S. P. Ngum and P. Israsena, "Real-Time EEG-Based Happiness Detection System," Sci. World J., pp. 1-12, 2013. DOI:10.1155/2013/618649
- S. Koelstra, C. Muhl, M. Soleymani, J. S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt and I. Patras, "DEAP: A Database for Emotion Analysis ;Using Physiological Signals," IEEE Trans. Affect. Comput, vol.3, no.1, pp. 18-31, 2012. DOI:10.1109/T-AFFC.2011.15
- J. S. Yun and J. H. Kim, "A Study on Training Data Selection Method for EEG Emotion Analysis Using Artificial Neural Network," Int. J. Hyb. Inf. Technol, vol.11, no.1, pp. 7-12, 2018.
- G. Niu, W. Jitkrittum, B. Dai, H. Hachiya, and M. Sugiyama, "Squared-loss Mutual Information Regularization: A Novel Information-theoretic Approach to Semi-supervised Learning," in Proc. of the 30th International Conference on International Conference on Machine Learning, pp. 310-318, 2013.