DOI QR코드

DOI QR Code

A Study on Training Data Selection Method for EEG Emotion Analysis using Semi-supervised Learning Algorithm

준 지도학습 알고리즘을 이용한 뇌파 감정 분석을 위한 학습데이터 선택 방법에 관한 연구

  • Yun, Jong-Seob (Dept. of Computer Engineering, Seokyeong University) ;
  • Kim, Jin Heon (Dept. of Computer Engineering, Seokyeong University)
  • Received : 2018.09.10
  • Accepted : 2018.09.20
  • Published : 2018.09.30

Abstract

Recently, machine learning algorithms based on artificial neural networks started to be used widely as classifiers in the field of EEG research for emotion analysis and disease diagnosis. When a machine learning model is used to classify EEG data, if training data is composed of only data having similar characteristics, classification performance may be deteriorated when applied to data of another group. In this paper, we propose a method to construct training data set by selecting several groups of data using semi-supervised learning algorithm to improve these problems. We then compared the performance of the two models by training the model with a training data set consisting of data with similar characteristics to the training data set constructed using the proposed method.

최근 감정 분석 및 질병 진단을 위한 뇌파 연구 분야에서 인공 신경망을 기반으로 한 기계학습 알고리즘이 분류기로 널리 사용되기 시작했다. 뇌파 데이터 분류를 위해 기계학습 모델을 사용하는 경우 유사한 특성을 가지는 데이터만으로 학습데이터가 구성되면 다른 그룹의 데이터에 적용했을 때 분류 성능이 떨어질 수 있다. 본 논문에서는 이러한 문제점을 개선하기 위해 준 지도학습 알고리즘을 사용해 여러 그룹의 데이터를 선택하여 학습데이터 세트를 구성하는 방법을 제안한다. 이후 제안하는 방법을 사용하여 구성한 학습데이터 세트와 유사한 특성을 가지는 데이터로 구성된 학습데이터 세트로 모델을 학습하여 두 모델의 성능을 비교하였다.

Keywords

References

  1. W. Zheng, "Multichannel EEG-Based Emotion Recognition via Group Sparse Canonical Correlation Analysis," IEEE Trans. Cogn. Develop. Syst, vol.9, no.3, pp. 281-290, 2017. DOI:10.1109/TCDS.2016.2587290
  2. A. Jalilifard, E. B. Pizzolato and M. K. Islam, "Emotion classification using single-channel scalp-EEG recording," in Proc. of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 845-849, 2016. DOI:10.1109/EMBC.2016.7590833
  3. M. Li and B. L. Lu, "Emotion classification based on gamma-band EEG," in Proc. of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1223-1226, 2009. DOI:10.1109/IEMBS.2009.5334139
  4. B. Krisnandhika, A. Faqih, P. D. Pumamasari and B. Kusumoputro, "Emotion recognition system based on EEG signals using relative wavelet energy features and a modified radial basis function neural networks," in Proc. of the 2017 International Conference on Consumer Electronics and Devices (ICCED), pp. 50-54, 2017. DOI:10.1109/ICCED.2017.8019990
  5. M. Z. Ahmad, M. Saeed, S. Saleem and A. M. Kamboh, "Seizure detection using EEG: A survey of different techniques," in Proc. of the 2016 International Conference on Emerging Technologies (ICET), pp. 1-6, 2016. DOI:10.1109/ICET.2016.7813209
  6. Y. Yuan, G. Xun, F. Ma, Q. Suo, H. Xue, K. Jia and A. Zhang, "A novel channel-aware attention framework for multi-channel EEG seizure detection via multi-view deep learning," in Proc. of the 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp. 206-209, 2018. DOI:10.1109/BHI.2018.8333405
  7. L. Boubchir, B. Daachi and V. Pangracious, "A review of feature extraction for EEG epileptic seizure detection and classification," in Proc. of the 2017 40th International Conference on Telecommunications and Signal Processing (TSP), pp. 456-460, 2017. DOI:10.1109/TSP.2017.8076027
  8. M. Bachmann, J. Lass and H. Hinrikus, "Single channel EEG analysis for detection of depression," Biomed Signal Process Control, vol.31, pp. 391-397, 2017. DOI:10.1016/j.bspc.2016.09.010
  9. M. Z. Ilyas, P. Saad, M. I. Ahmad and A. R. I. Ghani, "Classification of EEG signals for brain-computer interface applications: Performance comparison," in Proc. of the 2016 International Conference on Robotics, Automation and Sciences (ICORAS), pp. 1-4, 2016. DOI:10.1109/ICORAS.2016.7872610
  10. B. Abibullaev, "Learning suite of kernel feature spaces enhances SMR-based EEG-BCI classification," in Proc. of the 2017 5th International Winter Conference on Brain-Computer Interface (BCI), pp. 55-59, 2017. DOI:10.1109/IWW-BCI.2017.7858158
  11. P. Tan, W. S. and L. Yu, "Applying Extreme Learning Machine to classification of EEG BCI," in Proc. of the 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 228-232, 2016. DOI:10.1109/CYBER.2016.7574827
  12. N. Jatupaiboon, S. P. Ngum and P. Israsena, "Real-Time EEG-Based Happiness Detection System," Sci. World J., pp. 1-12, 2013. DOI:10.1155/2013/618649
  13. S. Koelstra, C. Muhl, M. Soleymani, J. S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt and I. Patras, "DEAP: A Database for Emotion Analysis ;Using Physiological Signals," IEEE Trans. Affect. Comput, vol.3, no.1, pp. 18-31, 2012. DOI:10.1109/T-AFFC.2011.15
  14. J. S. Yun and J. H. Kim, "A Study on Training Data Selection Method for EEG Emotion Analysis Using Artificial Neural Network," Int. J. Hyb. Inf. Technol, vol.11, no.1, pp. 7-12, 2018.
  15. G. Niu, W. Jitkrittum, B. Dai, H. Hachiya, and M. Sugiyama, "Squared-loss Mutual Information Regularization: A Novel Information-theoretic Approach to Semi-supervised Learning," in Proc. of the 30th International Conference on International Conference on Machine Learning, pp. 310-318, 2013.