DOI QR코드

DOI QR Code

Design of Gas Classifier Based On Artificial Neural Network

인공신경망 기반 가스 분류기의 설계

  • Jeong, Woojae (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Kim, Minwoo (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Cho, Jaechan (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Jung, Yunho (School of Electronics and Information Engineering, Korea Aerospace University)
  • Received : 2018.09.05
  • Accepted : 2018.09.20
  • Published : 2018.09.30

Abstract

In this paper, we propose the gas classifier based on restricted column energy neural network (RCE-NN) and present its hardware implementation results for real-time learning and classification. Since RCE-NN has a flexible network architecture with real-time learning process, it is suitable for gas classification applications. The proposed gas classifier showed 99.2% classification accuracy for the UCI gas dataset and was implemented with 26,702 logic elements with Intel-Altera cyclone IV FPGA. In addition, it was verified with FPGA test system at an operating frequency of 63MHz.

본 논문에서는 restricted coulomb energy(RCE) 신경망 기반 가스 분류기를 제안하고, 이의 실시간 학습 및 분류를 위한 하드웨어 구현 결과를 제시한다. RCE 신경망은 네트워크 구조가 학습에 따라 유동적이며, 실시간 학습 및 분류가 가능하므로, 가스 분류 응용에 적합한 특징을 갖는다. 설계된 가스 분류기는 UCI gas dataset에 대해 99.2%의 분류 정확도를 보였으며, Intel-Altera cyclone IV FPGA 기반 구현 결과, 26,702개의 logic elements로 구현 가능함을 확인하였다. 또한, FPGA test system을 구성하여 63MHz의 동작 주파수로 실시간 검증을 수행하였다.

Keywords

References

  1. Duk-Dong Lee, Dae-Sik Lee, "Environmental Gas Sensors," IEEE SENSORS, vol.1, no.3, pp. 214-224, October. 2011. DOI:10.1109/JSEN.2001.954834
  2. Chengxiang Wang, Longwei Yin, Luyuan Zhang, Dong Xiang, Rui Gao, "Metal Oxide Gas Sensors: Sensitivity and Influencing Factors," Sensors, vol.10, pp. 2088-2106, March. 2010. DOI:10.3390/s100302088
  3. Xiaojun Zhai, Amine Ait Si Ali, Abbes Amira, Faycal Bensaali, "MLP Neural Network Based Gas Classification System on Zynq SoC," IEEE Access, vol.4, pp. 8138-8146, October. 2016. DOI:10.1109/ACCESS.2016.2619181
  4. F. Benrekia, M. Attari, M. Bouhedda, "Gas sensors characterization and multilayer perceptron (MLP) hardware implementation for gas identification using a field programmable gate array (FPGA)," Sensors, vol.13, no.3, pp. 2967-2985, March, 2013. 10.3390/s130302967
  5. Pai Peng, Xiaojin Zhao, Xiaofang Pan, Wenbin Ye, "Gas Classification Using Deep Convolutional Neural Networks," Sensors, vol.18, no.1, pp. 1-11, January, 2018. DOI:10.3390/s18010157
  6. Kun Wang, Wenbin Ye, Xiaojin Zhao, Xiaofang Pan, "A Support Vector Machine-Based Genetic Algorithm Method for Gas Classification," in Proc. of the 2017 2nd international Conference on Frontiers of Sensors Technologies, 2017, pp. 363-366. DOI:10.1109/ICFST.2017.8210537
  7. G.Dong, M.Xie, "Color Clustering and Learning for Image Segmentation Based on Neural Networks," IEEE Transactions on Neural Network, vol.16, ISSUE 4, pp. 925-936, July. 2005. DOI:10.1109/TNN.2005.849822
  8. Alexander Vergara, "UCI Machine Learning Repository," https://archive.ics.uci.edu/ml/datasets/gas+sensor+array+drift+dataset
  9. Alexander Vergara, Shankar Vembu, Tuba Ayhan, Margaret A.Ryan, Margie L. Homer, Ramon Huerta, "Chemical Gas Sensor Drift Compensation Using Classifier Ensembles," Sensors and Actuators B: Chemical, Vol. 166-17, No. 20, pp. 320-329, May 2012. DOI:10.1016/j.snb.2012.01.074

Cited by

  1. 자가학습 가능한 SVM 기반 가스 분류기의 설계 vol.23, pp.4, 2018, https://doi.org/10.7471/ikeee.2019.23.4.1400
  2. 보안 감시용 레이다 시스템을 위한 면적-효율적인 특징점 추출기 설계 vol.24, pp.1, 2018, https://doi.org/10.7471/ikeee.2020.24.1.200