References
- Duk-Dong Lee, Dae-Sik Lee, "Environmental Gas Sensors," IEEE SENSORS, vol.1, no.3, pp. 214-224, October. 2011. DOI:10.1109/JSEN.2001.954834
- Chengxiang Wang, Longwei Yin, Luyuan Zhang, Dong Xiang, Rui Gao, "Metal Oxide Gas Sensors: Sensitivity and Influencing Factors," Sensors, vol.10, pp. 2088-2106, March. 2010. DOI:10.3390/s100302088
- Xiaojun Zhai, Amine Ait Si Ali, Abbes Amira, Faycal Bensaali, "MLP Neural Network Based Gas Classification System on Zynq SoC," IEEE Access, vol.4, pp. 8138-8146, October. 2016. DOI:10.1109/ACCESS.2016.2619181
- F. Benrekia, M. Attari, M. Bouhedda, "Gas sensors characterization and multilayer perceptron (MLP) hardware implementation for gas identification using a field programmable gate array (FPGA)," Sensors, vol.13, no.3, pp. 2967-2985, March, 2013. 10.3390/s130302967
- Pai Peng, Xiaojin Zhao, Xiaofang Pan, Wenbin Ye, "Gas Classification Using Deep Convolutional Neural Networks," Sensors, vol.18, no.1, pp. 1-11, January, 2018. DOI:10.3390/s18010157
- Kun Wang, Wenbin Ye, Xiaojin Zhao, Xiaofang Pan, "A Support Vector Machine-Based Genetic Algorithm Method for Gas Classification," in Proc. of the 2017 2nd international Conference on Frontiers of Sensors Technologies, 2017, pp. 363-366. DOI:10.1109/ICFST.2017.8210537
- G.Dong, M.Xie, "Color Clustering and Learning for Image Segmentation Based on Neural Networks," IEEE Transactions on Neural Network, vol.16, ISSUE 4, pp. 925-936, July. 2005. DOI:10.1109/TNN.2005.849822
- Alexander Vergara, "UCI Machine Learning Repository," https://archive.ics.uci.edu/ml/datasets/gas+sensor+array+drift+dataset
- Alexander Vergara, Shankar Vembu, Tuba Ayhan, Margaret A.Ryan, Margie L. Homer, Ramon Huerta, "Chemical Gas Sensor Drift Compensation Using Classifier Ensembles," Sensors and Actuators B: Chemical, Vol. 166-17, No. 20, pp. 320-329, May 2012. DOI:10.1016/j.snb.2012.01.074
Cited by
- 자가학습 가능한 SVM 기반 가스 분류기의 설계 vol.23, pp.4, 2018, https://doi.org/10.7471/ikeee.2019.23.4.1400
- 보안 감시용 레이다 시스템을 위한 면적-효율적인 특징점 추출기 설계 vol.24, pp.1, 2018, https://doi.org/10.7471/ikeee.2020.24.1.200