DOI QR코드

DOI QR Code

Circuit configuration of step-up converter with reduced working voltage of output capacitor

출력커패시터 내압 저감이 가능한 승압 컨버터 구조

  • Kim, Sun-pil (Dept. of Electrical Engineering, Chonnam National University) ;
  • Park, Sung-Jun (Dept. of Electrical Engineering, Chonnam National University) ;
  • Kang, Feel-soon (Dept. of Electronics and Control Engineering, Hanbat National University)
  • Received : 2018.08.28
  • Accepted : 2018.09.18
  • Published : 2018.09.30

Abstract

To supply a high voltage to an inverter, a motor control unit (MCU) generally employs a front-end boost converter. Because it generates a high output voltage, the converter needs an output capacitor, which has a high working voltage resulted in cost increasing. To solve this problem, we present a bidirectional dc-to-dc converter, which can decrease a working voltage of the output capacitor. Basic characteristic of the proposed converter is similar to a conventional boost converter. A difference comes from the structure of the output terminal connecting an output capacitor and an input battery in series. Owing to this circuit configuration, the working voltage of the output capacitor becomes lower than that of a conventional boost converter. After theoretical analysis, we carry out simulations and experiments to verify the validity and performance comparing with a conventional boost converter.

모터제어장치(MCU)는 높은 전압을 공급하기 위해 인버터 앞 단에 승압용 컨버터를 사용한다. 승압 컨버터는 높은 출력전압을 생성하기 때문에 내압이 높은 출력 커패시터가 필요하여 커패시터의 비용이 증가하게 된다. 이를 해결하기 위해 출력 커패시터의 작동 전압을 낮출 수 있는 승압 컨버터 구조를 제시한다. 제안된 컨버터의 기본 특성은 기존의 부스트 컨버터와 유사하며, 출력 커패시터와 입력 배터리를 직렬로 연결하는 출력 단자의 구조적 차이가 있다. 이러한 출력단 회로 구조에 의해 출력 커패시터의 동작 전압은 기존 승압 컨버터 보다 낮아진다. 이론적 분석, 시뮬레이션, 실험을 통해 기존 부스트 컨버터와 비교하고 타당성과 성능을 검증한다.

Keywords

References

  1. N. Herath, P. Binduhewa, L. Samaranayake, J. Ekanayake, S. Longo, "Design of a dual energy storage power converter for a small electric vehicle," IEEE Int. Conf. Ind. and Information Systems (ICIIS), 2017, pp. 1-6. DOI:10.1109/ICIINFS.2017.8300393
  2. B. V. Kumar, R. K. Singh, and R. Mahanty, "A modified non-isolated bidirectional DC-DC converter for EV/HEV's traction drive systems," IEEE Int. Conf. Power Elect. Drives and Energy Systems, 2016, pp. 1-6. DOI:10.1109/PEDES.2016.7914345
  3. A. M. Omara, M. Sleptsov, "Bidirectional interleaved DC/DC converter for electric vehicle application," 11th Int. Forum Strat. Tech. (IFOST), 2016, pp. 100-104. DOI:10.1109/IFOST.2016.7884201
  4. A. Kumar, P. Gaur, "Bidirectional DC/DC converter for hybrid electric vehicle," Int. Conf. Advances in Computing, Comm. and Infor. (ICACCI), 2014, pp. 839-843. DOI:10.1109/ICACCI.2014.6968295
  5. A. K. Verma, B. Singh, and D.T. Shahani, "Grid to vehicle and vehicle to grid energy transfer using single-phase bidirectional AC-DC converter and bidirectional DC-DC converter," Int. Conf. Energy, Automation and Signal, 2011, pp. 1-5. DOI:10.1109/ICEAS.2011.6147084
  6. M. B. Dakshina and M. K. Kazimierczuk, "DC-DC converters for electric vehicle applications," Elect. Insul. Conf. and Elec. Manufacturing Expo, 2007, pp. 286-293. DOI:10.1109/EEIC.2007.4562633
  7. R. Gules, L. Pfitscher, and L. Franco, "An Interleaved Boost DC-DC Converter with Large Conversion Ratio," Proc. of IEEE ISIE, vol.1, 2003, pp. 411-416. DOI:10.1109/ISIE.2003.1267284
  8. M. S. Choi, S. G. Song, S. J. Park, D. K. Kim, and Y. G. Kim, "Development of High Efficiency Boost DC/DC Converter For EV," Trans. Korean Inst. Power Elect., vol.15, no.2, pp. 127-133, April 2010. DOI:10.6113/TKPE.2010.15.2.127
  9. Muhammad H. Rashid, Power Electronics: Circuits, Devices and Applications, Third Edition, pp. 224-228, Aug. 2003.
  10. T. J. Liang and K. C. Tseng, "Analysis of integrated boost-flyback step-up converter," Proc. of IEE Electric Power Appl, vol.152, no.2, 2005, pp. 217-225. DOI:10.1049/ip-epa:20045003
  11. K. C. Tseng and T. J. Liang, "Novel highefficiency step-up converter," Proc. of IEE Electric Power Appl, vol.151, no.2, 2004, pp. 182-190. DOI:10.1049/ip-epa:20040022