참고문헌
- Hanover LM and White JS (1993) Manufacturing, composition, and applications of fructose. Am J Clin Nutr 58, 724S-732S https://doi.org/10.1093/ajcn/58.5.724S
- Bray GA, Nielsen SJ and Popkin BM (2004) Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79, 537-543 https://doi.org/10.1093/ajcn/79.4.537
- Powell ES, Smith-Taillie LP and Popkin BM (2016) Added Sugars Intake Across the Distribution of US Children and Adult Consumers: 1977-2012. J Acad Nutr Diet 116, 1543-1550 e1541 https://doi.org/10.1016/j.jand.2016.06.003
- Lee H-S, Kwon S-o, Yon M et al (2014) Dietary total sugar intake of Koreans: Based on the Korea National Health and Nutrition Examination Survey (KNHANES), 2008-2011. J Nutr Health 47, 268-276 https://doi.org/10.4163/jnh.2014.47.4.268
- Elliott SS, Keim NL, Stern JS, Teff K and Havel PJ (2002) Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76, 911-922 https://doi.org/10.1093/ajcn/76.5.911
- Haidari M, Leung N, Mahbub F et al (2002) Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J Biol Chem 277, 31646-31655 https://doi.org/10.1074/jbc.M200544200
- Stanhope KL (2012) Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annu Rev Med 63, 329-343 https://doi.org/10.1146/annurev-med-042010-113026
- Jones HF, Butler RN and Brooks DA (2011) Intestinal fructose transport and malabsorption in humans. Am J Physiol Gastrointest Liver Physiol 300, G202-206 https://doi.org/10.1152/ajpgi.00457.2010
- Heizer WD, Southern S and McGovern S (2009) The role of diet in symptoms of irritable bowel syndrome in adults: a narrative review. J Am Diet Assoc 109, 1204-1214 https://doi.org/10.1016/j.jada.2009.04.012
- Le KA, Ith M, Kreis R et al (2009) Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am J Clin Nutr 89, 1760-1765 https://doi.org/10.3945/ajcn.2008.27336
- Thorens B and Mueckler M (2010) Glucose transporters in the 21st Century. Am J Physiol Endocrinol Metab 298, E141-145 https://doi.org/10.1152/ajpendo.00712.2009
- Burant CF, Takeda J, Brot-Laroche E, Bell GI and Davidson NO (1992) Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem 267, 14523-14526
- Corpe CP, Burant CF and Hoekstra JH (1999) Intestinal fructose absorption: clinical and molecular aspects. J Pediatr Gastroenterol Nutr 28, 364-374 https://doi.org/10.1097/00005176-199904000-00004
- Castello A, Guma A, Sevilla L et al (1995) Regulation of GLUT5 gene expression in rat intestinal mucosa: regional distribution, circadian rhythm, perinatal development and effect of diabetes. Biochem J 309, 271-277 https://doi.org/10.1042/bj3090271
- Blakemore SJ, Aledo JC, James J, Campbell FC, Lucocq JM and Hundal HS (1995) The GLUT5 hexose transporter is also localized to the basolateral membrane of the human jejunum. Biochem J 309, 7-12 https://doi.org/10.1042/bj3090007
- Jang C, Hui S, Lu W et al (2018) The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids. Cell Metab 27, 351-361 e353 https://doi.org/10.1016/j.cmet.2017.12.016
- Ferraris RP, Yasharpour S, Lloyd KC, Mirzayan R and Diamond JM (1990) Luminal glucose concentrations in the gut under normal conditions. Am J Physiol 259, G822-837
- Patel C, Sugimoto K, Douard V et al (2015) Effect of dietary fructose on portal and systemic serum fructose levels in rats and in KHK-/- and GLUT5-/- mice. Am J Physiol Gastrointest Liver Physiol 309, G779-790 https://doi.org/10.1152/ajpgi.00188.2015
- Douard V and Ferraris RP (2008) Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab 295, E227-237 https://doi.org/10.1152/ajpendo.90245.2008
- Gorboulev V, Schurmann A, Vallon V et al (2012) Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 61, 187-196 https://doi.org/10.2337/db11-1029
- Woods HF, Eggleston LV and Krebs HA (1970) The cause of hepatic accumulation of fructose 1-phosphate on fructose loading. Biochem J 119, 501-510 https://doi.org/10.1042/bj1190501
- van den Berghe G, Bronfman M, Vanneste R and Hers HG (1977) The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase. Biochem J 162, 601-609 https://doi.org/10.1042/bj1620601
- Yun Y, Yin H, Gao Z et al (2017) Intestinal tract is an important organ for lowering serum uric acid in rats. PLoS One 12, e0190194 https://doi.org/10.1371/journal.pone.0190194
- Diggle CP, Shires M, McRae C et al (2010) Both isoforms of ketohexokinase are dispensable for normal growth and development. Physiol Genomics 42A, 235-243 https://doi.org/10.1152/physiolgenomics.00128.2010
- Ishimoto T, Lanaspa MA, Le MT et al (2012) Opposing effects of fructokinase C and A isoforms on fructoseinduced metabolic syndrome in mice. Proc Natl Acad Sci U S A 109, 4320-4325 https://doi.org/10.1073/pnas.1119908109
- Mayes PA (1993) Intermediary metabolism of fructose. Am J Clin Nutr 58, 754S-765S https://doi.org/10.1093/ajcn/58.5.754S
- Heinz F, Lamprecht W and Kirsch J (1968) Enzymes of fructose metabolism in human liver. J Clin Invest 47, 1826-1832 https://doi.org/10.1172/JCI105872
- Sun SZ and Empie MW (2012) Fructose metabolism in humans - what isotopic tracer studies tell us. Nutr Metab (Lond) 9, 89 https://doi.org/10.1186/1743-7075-9-89
- Douard V and Ferraris RP (2013) The role of fructose transporters in diseases linked to excessive fructose intake. J Physiol 591, 401-414 https://doi.org/10.1113/jphysiol.2011.215731
- de Luis O, Valero MC and Jurado LA (2000) WBSCR14, a putative transcription factor gene deleted in Williams-Beuren syndrome: complete characterisation of the human gene and the mouse ortholog. Eur J Hum Genet 8, 215-222 https://doi.org/10.1038/sj.ejhg.5200435
- Yamashita H, Takenoshita M, Sakurai M et al (2001) A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A 98, 9116-9121 https://doi.org/10.1073/pnas.161284298
- Shih HM, Liu Z and Towle HC (1995) Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J Biol Chem 270, 21991-21997 https://doi.org/10.1074/jbc.270.37.21991
- Stoeckman AK, Ma L and Towle HC (2004) Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J Biol Chem 279, 15662-15669 https://doi.org/10.1074/jbc.M311301200
- Ma L, Robinson LN and Towle HC (2006) ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver. J Biol Chem 281, 28721-28730 https://doi.org/10.1074/jbc.M601576200
- Kawaguchi T, Takenoshita M, Kabashima T and Uyeda K (2001) Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci U S A 98, 13710-13715 https://doi.org/10.1073/pnas.231370798
- Kawaguchi T, Osatomi K, Yamashita H, Kabashima T and Uyeda K (2002) Mechanism for fatty acid "sparing" effect on glucose-induced transcription: regulation of carbohydrate-responsive element-binding protein by AMPactivated protein kinase. J Biol Chem 277, 3829-3835 https://doi.org/10.1074/jbc.M107895200
- Sato S, Jung H, Nakagawa T et al (2016) Metabolite Regulation of Nuclear Localization of Carbohydrateresponse Element-binding Protein (ChREBP): ROLE OF AMP AS AN ALLOSTERIC INHIBITOR. J Biol Chem 291, 10515-10527 https://doi.org/10.1074/jbc.M115.708982
- Dentin R, Tomas-Cobos L, Foufelle F et al (2012) Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. J Hepatol 56, 199-209 https://doi.org/10.1016/j.jhep.2011.07.019
- Kabashima T, Kawaguchi T, Wadzinski BE and Uyeda K (2003) Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci U S A 100, 5107-5112 https://doi.org/10.1073/pnas.0730817100
- Iizuka K, Wu W, Horikawa Y and Takeda J (2013) Role of glucose-6-phosphate and xylulose-5-phosphate in the regulation of glucose-stimulated gene expression in the pancreatic beta cell line, INS-1E. Endocr J 60, 473-482
- Arden C, Tudhope SJ, Petrie JL et al (2012) Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes. Biochem J 443, 111-123 https://doi.org/10.1042/BJ20111280
- Herman MA, Peroni OD, Villoria J et al (2012) A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484, 333-338 https://doi.org/10.1038/nature10986
- Li MV, Chang B, Imamura M, Poungvarin N and Chan L (2006) Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes 55, 1179-1189 https://doi.org/10.2337/db05-0822
- Sakiyama H, Wynn RM, Lee WR et al (2008) Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): interaction of an alpha-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation. J Biol Chem 283, 24899-24908 https://doi.org/10.1074/jbc.M804308200
- Fukasawa M, Ge Q, Wynn RM, Ishii S and Uyeda K (2010) Coordinate regulation/localization of the carbohydrate responsive binding protein (ChREBP) by two nuclear export signal sites: discovery of a new leucine-rich nuclear export signal site. Biochem Biophys Res Commun 391, 1166-1169 https://doi.org/10.1016/j.bbrc.2009.11.115
- Ge Q, Nakagawa T, Wynn RM, Chook YM, Miller BC and Uyeda K (2011) Importin-alpha protein binding to a nuclear localization signal of carbohydrate response element-binding protein (ChREBP). J Biol Chem 286, 28119-28127 https://doi.org/10.1074/jbc.M111.237016
- Bricambert J, Miranda J, Benhamed F, Girard J, Postic C and Dentin R (2010) Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest 120, 4316-4331 https://doi.org/10.1172/JCI41624
- Guinez C, Filhoulaud G, Rayah-Benhamed F et al (2011) O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 60, 1399-1413 https://doi.org/10.2337/db10-0452
- Ido-Kitamura Y, Sasaki T, Kobayashi M et al (2012) Hepatic FoxO1 integrates glucose utilization and lipid synthesis through regulation of Chrebp O-glycosylation. PLoS One 7, e47231 https://doi.org/10.1371/journal.pone.0047231
- Koo HY, Miyashita M, Cho BH and Nakamura MT (2009) Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus. Biochem Biophys Res Commun 390, 285-289 https://doi.org/10.1016/j.bbrc.2009.09.109
- Lanaspa MA, Sanchez-Lozada LG, Cicerchi C et al (2012) Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver. PLoS One 7, e47948 https://doi.org/10.1371/journal.pone.0047948
- Kim MS, Krawczyk SA, Doridot L et al (2016) ChREBP regulates fructose-induced glucose production independently of insulin signaling. J Clin Invest 126, 4372-4386 https://doi.org/10.1172/JCI81993
- Kim M, Astapova II, Flier SN et al (2017) Intestinal, but not hepatic, ChREBP is required for fructose tolerance. JCI Insight 2, e96703 https://doi.org/10.1172/jci.insight.96703
- Oh AR, Sohn S, Lee J et al (2018) ChREBP deficiency leads to diarrhea-predominant irritable bowel syndrome. Metabolism 85, 286-297 https://doi.org/10.1016/j.metabol.2018.04.006
- Iizuka K, Bruick RK, Liang G, Horton JD and Uyeda K (2004) Deficiency of carbohydrate response elementbinding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A 101, 7281-7286 https://doi.org/10.1073/pnas.0401516101
- Uyeda K and Repa JJ (2006) Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab 4, 107-110 https://doi.org/10.1016/j.cmet.2006.06.008
- Jeong YS, Kim D, Lee YS et al (2011) Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucoseregulated gene expression. PLoS One 6, e22544 https://doi.org/10.1371/journal.pone.0022544
- Poungvarin N, Chang B, Imamura M et al (2015) Genome-Wide Analysis of ChREBP Binding Sites on Male Mouse Liver and White Adipose Chromatin. Endocrinology 156, 1982-1994 https://doi.org/10.1210/en.2014-1666
- Bae JS, Oh AR, Lee HJ, Ahn YH and Cha JY (2016) Hepatic Elovl6 gene expression is regulated by the synergistic action of ChREBP and SREBP-1c. Biochem Biophys Res Commun 478, 1060-1066 https://doi.org/10.1016/j.bbrc.2016.08.061
- Iizuka K, Takeda J and Horikawa Y (2009) Glucose induces FGF21 mRNA expression through ChREBP activation in rat hepatocytes. FEBS Lett 583, 2882-2886 https://doi.org/10.1016/j.febslet.2009.07.053
- Pedersen KB, Zhang P, Doumen C et al (2007) The promoter for the gene encoding the catalytic subunit of rat glucose-6-phosphatase contains two distinct glucoseresponsive regions. Am J Physiol Endocrinol Metab 292, E788-801 https://doi.org/10.1152/ajpendo.00510.2006
- Shin E, Bae JS, Han JY et al (2016) Hepatic DGAT2 gene expression is regulated by the synergistic action of ChREBP and SP1 in HepG2 cells. Anim Cells Syst 20, 7-14 https://doi.org/10.1080/19768354.2015.1131738
- Iizuka K, Tomita R, Takeda J and Horikawa Y (2012) Rat glucagon receptor mRNA is directly regulated by glucose through transactivation of the carbohydrate response element binding protein. Biochem Biophys Res Commun 417, 1107-1112 https://doi.org/10.1016/j.bbrc.2011.12.042
- Noordeen NA, Khera TK, Sun G et al (2010) Carbohydrateresponsive element-binding protein (ChREBP) is a negative regulator of ARNT/HIF-1beta gene expression in pancreatic islet beta-cells. Diabetes 59, 153-160 https://doi.org/10.2337/db08-0868
- Boergesen M, Poulsen L, Schmidt SF, Frigerio F, Maechler P and Mandrup S (2011) ChREBP mediates glucose repression of peroxisome proliferator-activated receptor alpha expression in pancreatic beta-cells. J Biol Chem 286, 13214-13225 https://doi.org/10.1074/jbc.M110.215467
- Fisher FM, Kim M, Doridot L et al (2017) A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol Metab 6, 14-21 https://doi.org/10.1016/j.molmet.2016.11.008
- Barone S, Fussell SL, Singh AK et al (2009) Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J Biol Chem 284, 5056-5066 https://doi.org/10.1074/jbc.M808128200
- Patel C, Douard V, Yu S, Tharabenjasin P, Gao N and Ferraris RP (2015) Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK. Am J Physiol Regul Integr Comp Physiol 309, R499-509 https://doi.org/10.1152/ajpregu.00128.2015
- Kato T, Iizuka K, Takao K, Horikawa Y, Kitamura T and Takeda J (2018) ChREBP-Knockout Mice Show Sucrose Intolerance and Fructose Malabsorption. Nutrients 10, 340 https://doi.org/10.3390/nu10030340
- Camilleri M (2001) Management of the irritable bowel syndrome. Gastroenterology 120, 652-668 https://doi.org/10.1053/gast.2001.21908
- Riby JE, Fujisawa T and Kretchmer N (1993) Fructose absorption. Am J Clin Nutr 58, 748S-753S https://doi.org/10.1093/ajcn/58.5.748S
- Gibson PR, Newnham E, Barrett JS, Shepherd SJ and Muir JG (2007) Review article: fructose malabsorption and the bigger picture. Aliment Pharmacol Ther 25, 349-363
- Andersson DE and Nygren A (1978) Four cases of long-standing diarrhoea and colic pains cured by fructosefree diet--a pathogenetic discussion. Acta Med Scand 203, 87-92
- Ravich WJ, Bayless TM and Thomas M (1983) Fructose: incomplete intestinal absorption in humans. Gastroenterology 84, 26-29
- Rumessen JJ and Gudmand-Hoyer E (1988) Functional bowel disease: malabsorption and abdominal distress after ingestion of fructose, sorbitol, and fructose-sorbitol mixtures. Gastroenterology 95, 694-700 https://doi.org/10.1016/S0016-5085(88)80016-7
- Choi YK, Johlin FC Jr, Summers RW, Jackson M and Rao SS (2003) Fructose intolerance: an under-recognized problem. Am J Gastroenterol 98, 1348-1353 https://doi.org/10.1111/j.1572-0241.2003.07476.x