DOI QR코드

DOI QR Code

Generation of daily temperature data using monthly mean temperature and precipitation data

월 평균 기온과 강우 자료를 이용한 일 기온 자료의 생성

  • Moon, Kyung Hwan (National Institute of Horticulture and Herbal Science Rural Development Administration) ;
  • Song, Eun Young (National Institute of Horticulture and Herbal Science Rural Development Administration) ;
  • Wi, Seung Hwan (National Institute of Horticulture and Herbal Science Rural Development Administration) ;
  • Seo, Hyung Ho (National Institute of Horticulture and Herbal Science Rural Development Administration) ;
  • Hyun, Hae Nam (Major of plant resources and environment Jeju National University)
  • 문경환 (국립원예특작과학원 농촌진흥청) ;
  • 송은영 (국립원예특작과학원 농촌진흥청) ;
  • 위승환 (국립원예특작과학원 농촌진흥청) ;
  • 서형호 (국립원예특작과학원 농촌진흥청) ;
  • 현해남 (식물자원환경전공 제주대학교)
  • Received : 2018.02.13
  • Accepted : 2018.09.13
  • Published : 2018.09.30

Abstract

This study was conducted to develop a method to generate daily maximum and minimum temperatures using monthly data. We analyzed 30-year daily weather data of the 23 meteorological stations in South Korea and elucidated the parameters for predicting annual trend (center value ($\hat{U}$), amplitude (C), deviation (T)) and daily fluctuation (A, B) of daily maximum and minimum temperature. We use national average values for C, T, A and B parameters, but the center value is derived from the annual average data on each stations. First, daily weather data were generated according to the occurrence of rainfall, then calibrated using monthly data, and finally, daily maximum and minimum daily temperatures were generated. With this method, we could generate daily weather data with more than 95% similar distribution to recorded data for all 23 stations. In addition, this method was able to generate Growing Degree Day(GDD) similar to the past data, and it could be applied to areas not subject to survey. This method is useful for generating daily data in case of having monthly data such as climate change scenarios.

이 연구는 월평균 기상자료를 이용하여 일 최고기온, 일 최저기온을 생성하는 방법을 개발하기 위하여 진행되었다. 전국 23개 기상관서의 과거 30년간의 일기상자료를 분석하여 일 최고기온 및 일 최저기온의 연간 변동 경향을 나타내는 모수(중심값($\hat{U}$), 진폭(C), 편이(T))와 일간 변동을 반영하는 모수(A, B)를 탐색하였다. 그 중 중심값은 지점간의 연 평균자료로부터 도출하였고, 중심값을 제외한 모수들은 전국 평균을 기상생성과정에 적용하였다. 먼저 강우발생 유무에 따라 일 기상자료를 생성한 후 월 자료를 이용하여 보정하고 마지막으로 일 최고기온 및 일 최저기온을 생성하였다. 이 방법으로 전체 23개 지역에 대하여 월별로 생성하였을 때 전체 월별 분포의 95% 이상 관측된 분포와 유사한 일 자료를 생성할 수 있었다. 또 이 방법에 의해 과거 자료와 유사한 생장도일(Growing Degree Day)를 생성할 수 있었고, 조사대상이 아닌 지역에도 충분히 적용할 수 있었다. 이 방법은 기후변화시나리오 등 월 자료가 확보되어 있는 경우에 일기상자료를 생성하는데 유용할 것으로 판단되었다.

Keywords

References

  1. Bae, D.-H., I.-W. Jung, and W. T. Kwon, 2007: Generation of high resolution scenarios for climate change impacts on water resources(I): Climate scenarios on each sub-basins. Journal of Korea Water Resources Association 40, 191-204. https://doi.org/10.3741/JKWRA.2007.40.3.191
  2. Brisson, N., B. Mary, D. Ripoche, M. H. Jeuffroy, F. Ruget, B. Nicoullaud, et al. 1998: STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18, 311-346. https://doi.org/10.1051/agro:19980501
  3. Carter, T., M. Posch, and H. Tuomenvirta, 1995: SILMUSCEN and CLIGEN user's guide: Guidelines for the construction of climatic scenarios and use of a stochastic weather generator in the Finnish Research Programme on Climate Change (SILMU). Painatuskeskus, Publications of the Academy of Finland.
  4. Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A. Weaver, and M. Wehner, 2013: Chapter 12 - Long-term climate change: Projections, commitments and irreversibility. In: Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5. Eds. IPCC, Cambridge: Cambridge University Press.
  5. Fatichi, S., V. Y. Ivanov, and E. Caporali, 2011: Simulation of future climate scenarios with a weather generator. Advances in Water Resources 34, 448-467. https://doi.org/10.1016/j.advwatres.2010.12.013
  6. Hong, E. M., J. Y. Choi, S. H. Lee, S. H. Yoo, and M. S. Kang, 2009: Estimation of paddy rice evapotranspiration considering climate change using LARS-WG. Journal of The Korean Society of Agricultural Engineers 51, 25-35.
  7. Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W. Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie, 2003: The DSSAT cropping system model. European journal of agronomy 18(3-4), 235-265. https://doi.org/10.1016/S1161-0301(02)00107-7
  8. Kilsby, C., P. Jones, A. Burton, A. Ford, H. Fowler, C. Harpham, P. James, A. Smith, and R. L. Wilby, 2007: A daily weather generator for use in climate change studies. Environmental Modelling & Software 22(12), 1705-1719. https://doi.org/10.1016/j.envsoft.2007.02.005
  9. Kim, J., and J. I. Yun, 2008: On mapping growing degree-days (GDD) from monthly digital climatic surfaces for South Korea. Journal of Agricultural and Forest Meteorology 10, 1-8. https://doi.org/10.5532/KJAFM.2008.10.1.001
  10. Kim, J., and J. I. Yun, 2016: The use and abuse of climate scenarios in agriculture. Korean Journal of Agricultural and Forest Meteorology 18, 170-178. https://doi.org/10.5532/KJAFM.2016.18.3.170
  11. Lee, J.-Y., 2003: Stochastic simulation of daily weather variables. Water Engineering Research 4, 111-126.
  12. Lobell, D. B., C. B. Field, K. N. Cahill, and C. Bonfils, 2006: Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties. Agricultural and Forest Meteorology 141, 208-218. https://doi.org/10.1016/j.agrformet.2006.10.006
  13. Mavromatis, T., and J. W. Hansen, 2001: Interannual variability characteristics and simulated crop response of four stochastic weather generators. Agricultural and forest meteorology 109, 283-296. https://doi.org/10.1016/S0168-1923(01)00272-6
  14. Meehl, G. A., R. Moss, K. E. Taylor, V. Eyring, R. J. Stouffer, S. Bony, and B. Stevens, 2014: Climate model intercomparisons: Preparing for the next phase. Eos, Transactions American Geophysical Union 95(9), 77-78.
  15. Moon, K. H., E. Song, I. Sonn, S. Wi, S. Oh, and H. N. Hyun, 2017. Estimation of Markov chain and gamma distribution parameters for generation of daily precipitation data from monthly data. Journal of Agricultural and Forest Meteorology 19, 27-35. https://doi.org/10.5532/KJAFM.2017.19.1.27
  16. Moss, R. H., J. A. Edmonds, K. A. Hibbard, M. R. Manning, S. K. Rose, D. P. Van Vuuren, T. R. Carter, S. Emori, M. Kainuma, T. Kram, G. A. Meehl, J. F. B. Thomson, J. P. Weyant, and T. J. Wilbanks, 2010: The next generation of scenarios for climate change research and assessment. Nature 463, 747pp. https://doi.org/10.1038/nature08823
  17. Richardson, C. W., and D. A. Wright, 1984: WGEN: A model for generating daily weather variables. ARS-8. Washington, D.C.: USDA Agricultural Research Service.
  18. Rosenzweig, C., J. Elliott, D. Deryng, A. C. Ruane, C. Müller, A. Arneth, K. J. Boote, C. Folberth, M. Glotter, N. Khabarov, K. Neumann, F. Piontek, T. A. M. Pugh, E. Schmid, E. Stehfest, H. Yang, and J. W. Jones, 2014: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences 111, 3268-3273. https://doi.org/10.1073/pnas.1222463110
  19. Rosenzweig, C., J. W. Jones, J. L. Hatfield, A. C. Ruane, K. J. Boote, P. Thorburn, J. M. Antle, G. C. Nelson, C. Porter, S. Janssen, S. Asseng, B. Basso, F. Ewert, D. Wallach, G. Baigorria, and J. M. Winter, 2013: The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agricultural and Forest Meteorology 170, 166-182. https://doi.org/10.1016/j.agrformet.2012.09.011
  20. Seino, H., 1993: An estimation of distribution of meteorological elements using GIS and AMeDAS data. Journal of Agricultural Meteorology 48(4), 379-383. https://doi.org/10.2480/agrmet.48.379
  21. Semenov, M. A., and E. M. Barrow, 1997: Use of a stochastic weather generator in the development of climate change scenarios. Climatic change 35(4), 397-414. https://doi.org/10.1023/A:1005342632279
  22. Semenov, M. A., E. M. Barrow, and LARS-WG, 2002: A stochastic weather generator for use in climate impact studies. User Man Herts UK.
  23. Soltani, A., and G. Hoogenboom, 2003: A statistical comparison of the stochastic weather generators WGEN and SIMMETEO. Climate Research 24(3), 215-230. https://doi.org/10.3354/cr024215
  24. Stockle, O., R. Nelson, M. Donatelli, and F. Castellvi, 2001: ClimGen: a flexible weather generation program. Proceedings of the Second International Symposium on Modelling Cropping Systems, July 16-18, 2001, Florence, Italy, 229-230.
  25. Teh, C., 2006: Introduction to mathematical modeling of crop growth. BrownWalker Press, Florida, USA.
  26. Wallis, T. W., and J. F. Griffiths, 1995: An assessment of the weather generator (WXGEN) used in the erosion/productivity impact calculator (EPIC). Agricultural and Forest Meteorology 73(1-2), 115-133. https://doi.org/10.1016/0168-1923(94)02172-G
  27. Williams, J., P. Dyke, and C. Jones, 1983: EPIC-A model for assessing the effects of erosion on soil productivity. Developments in Environmental Modelling. Elsevier. 553-572.
  28. Zhang, Q., B. Singh, S. Gagnon, J. Rousselle, N. Evora, and S. Weyman, 2004: The application of WGEN to simulate daily climatic data for several Canadian stations. Canadian Water Resources Journal 29(1), 59-72. https://doi.org/10.4296/cwrj59