DOI QR코드

DOI QR Code

Production of Indole-3-Acetic Acid by Enterobacter sp. DMKU-RP206 Using Sweet Whey as a Low-Cost Feed Stock

  • Srisuk, Nantana (Department of Microbiology, Faculty of Science, Kasetsart University) ;
  • Sakpuntoon, Varunya (Department of Microbiology, Faculty of Science, Kasetsart University) ;
  • Nutaratat, Pumin (Department of Microbiology, Faculty of Science, Kasetsart University)
  • 투고 : 2018.05.02
  • 심사 : 2018.07.08
  • 발행 : 2018.09.28

초록

In this study, we investigated Indole-3-acetic acid (IAA) production by a rice phylloplane bacteria, Enterobacter sp. DMKU-RP206, using sweet whey as a feed stock instead of lactose. We succeeded in using sweet whey for Enterobacter sp. DMKU-RP206 to produce 3,963.0 mg IAA/l with the optimal medium containing 1.48% sweet whey, 1.42% yeast extract and 0.88% $\text\tiny{L}$-tryptophan. The medium pH was adjusted to 6 and the culture conditions were shaking at 200 rpm on an orbital shaker at $30^{\circ}C$ for 3 days. We also evaluated the effect of IAA in culture filtrates of Enterobacter sp. DMKU-RP206 on the promotion of jasmine rice growth in a pot experiment. Compared with the negative control (without IAA), the result showed that biosynthetic IAA produced by Enterobacter sp. DMKU-RP206 significantly increased the growth of jasmine rice (Oryza sativa L. cv. KDML105) in terms of length and dry weight of shoot. This work thus reveals the impact of IAA produced by Enterobacter sp. on the promotion of jasmine rice growth.

키워드

참고문헌

  1. Jha CK, Patel B, Saraf M. 2012. Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2. World J. Microbiol. Biotechnol. 28: 891-899. https://doi.org/10.1007/s11274-011-0886-0
  2. George P, Gupta A, Gopal M, Thomas L, Thomas GV. 2013. Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.). World J. Microbiol. Biotechnol. 29: 109-117. https://doi.org/10.1007/s11274-012-1163-6
  3. Naveed M, Mitter B, Yousaf S, Pastar M, Afzal M, Sessitsch A. 2014. The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol. Fert. Soils 50: 249-262. https://doi.org/10.1007/s00374-013-0854-y
  4. Jetiyanon K. 2015. Multiple mechanisms of Enterobacter asburiaestrain RS83 for plant growth enhancement. Songklanakarin J. Sci. Technol. 37: 29-36.
  5. Li Y, Wang Q, Wang L, He LY, Sheng XF. 2016. Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: Implications for Sorghum sudanense biomass production and phytostabilization. Ecotox. Environ. Safety 124: 163-168. https://doi.org/10.1016/j.ecoenv.2015.10.012
  6. Taghavi S, van der Lelie D, Hoffman A, Zhang YB, Walla MD, Vangronsveld J, Newman L, Monchy S. 2010. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet. 6: e1000943. https://doi.org/10.1371/journal.pgen.1000943
  7. Witzel K, Gwinn-Giglio M, Nadendla S, Shefchek K, Ruppel S. 2012. Genome sequence of Enterobacter radicincitans DSM16656T, a plant growth-promoting endophyte. J. Bacteriol. 194: 5469. https://doi.org/10.1128/JB.01193-12
  8. Coulson TJ, Patten CL. 2015. Complete genome sequence of Enterobacter cloacae UW5, a rhizobacterium capable of high levels of indole-3-acetic acid production. Genome Announc. 3: e00843-15.
  9. Yaish MW. 2016. Draft genome sequence of endophytic bacterium Enterobacter asburiae PDA134, isolated from date palm (Phoenix dactylifera L.) roots. Genome Announc. 4: e00848-16.
  10. Madhaiyan M, Poonguzhali S, Lee JS, Saravanan VS, Lee KC, Santhanakrishnan P. 2010. Enterobacter arachidis sp. nov., a plant-growth promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut. Int. J. Syst. Evol. Microbiol. 60: 1559-1564. https://doi.org/10.1099/ijs.0.013664-0
  11. Bose A, Kher M, Nataraj M, Keharia H. 2016. Phytostimulatory effect of indole-3-acetic acid by Enterobacter cloacae SN19 isolated from Teramnus labialis (L. f.) Spreng rhizosphere. Biocatal. Agric. Biotechnol. 6: 128-137. https://doi.org/10.1016/j.bcab.2016.03.005
  12. Swain MR, Ray RC. 2008. Optimization of cultural conditions and their statistical interpretation for production of indole-3-acetic acid by Bacillus subtilis CM5 using cassava fibrous residue. J. Sci. Ind. Res. 67: 622-628.
  13. Sudha M, Gowri RS, Prabhavathi P, Astapriya P, Devi SY, Saranya A. 2012. Production and optimization of indole acetic acid by indigenous micro flora using agro waste as substrate. Pak. J. Biol. Sci. 15: 39-43. https://doi.org/10.3923/pjbs.2012.39.43
  14. Jelen P. 2011. Whey processing, pp. 731-743. In Fuquay JW, Fox PF, McSweeney PLH (eds.), Encyclopaedia of Dairy Sciences, 2nd Ed. Academic Press, London, UK.
  15. U.S. Dairy Export Council. 2004. Reference Manual for US Whey and Lactose Products. Available from http://www.thinkusadairy.org/assets/documents/Customer%20Site/C3-Using%20Dairy/C3.7-Resources%20and%20Insights/02-Product% 20Resources/ReferenceManualForWheyAndLactose_English1.pdf. Accessed 2 May 2018.
  16. Leite AR, Guimaraes WV, Araujo EFD, Silva DO. 2000. Fermentation of sweet whey by recombinant Escherichia coli K011. Braz. J. Microbiol. 31: 211-214. https://doi.org/10.1590/S1517-83822000000300011
  17. Alonso S, Rendueles M, Diaz M. 2011. Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions. Bioresource Technol. 102: 9730-9736. https://doi.org/10.1016/j.biortech.2011.07.089
  18. Fischer C, Kleinschmidt T. 2015. Synthesis of galactooligosaccharides using sweet and acid whey as a substrate. Int. Dairy. J. 48: 15-22. https://doi.org/10.1016/j.idairyj.2015.01.003
  19. Nutaratat P, Monprasit A, Srisuk N. 2017. High-yield production of indole-3-acetic acid by Enterobacter sp. DMKU-RP206, a rice phyllosphere bacterium that possesses plant growth-promoting traits. 3 Biotech 7: 305.
  20. Nutaratat P, Srisuk N, Arunrattiyakorn P, Limtong S. 2014. Plant growth-promoting traits of epiphytic and endophytic yeasts isolated from rice and sugar cane leaves in Thailand. Fungal Biol. 118: 683-694. https://doi.org/10.1016/j.funbio.2014.04.010
  21. Yoshida S, Forno DA, Cock JH, Gomez KA.1976. Laboratory manual for physiological studies of rice, 3rd Ed. International Rice Research Institutes, Los banos, Laguna, Philippines.
  22. Herrera SD, Grossi C, Zawoznik M, Groppa MD. 2016. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol. Res. 186: 37-43.
  23. Myers RH, Montgomery DC. 1995. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Wiley-Interscience, New York.
  24. Teale WD, Paponov IA, Palme K. 2006. Auxin in action: signaling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell. Biol. 7: 847-859. https://doi.org/10.1038/nrm2020
  25. Arshad M, Saleem M, Hussain S. 2007. Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol. 25: 356-362. https://doi.org/10.1016/j.tibtech.2007.05.005
  26. Ozdal M, Ozdal OG, Sezen A, Algur OF, Kurbanoglu EB. 2017. Continuous production of indole-3-acetic acid by immobilized cells of Arthrobacter agilis. 3 Biotech. 7: 23.
  27. Harikrishnan H, Shanmugaiah V, Balasubramanian N. 2014. Optimization for production of indole acetic acid (IAA) by plant-growth-promoting Streptomyces sp. VSMGT1014 isolated from rice rhizosphere. Int. J. Curr. Microbiol. Appl. Sci. 3: 158-171.
  28. Ahmed M, Stal LJ, Hasnain S. 2014. Biofilm formation and indole-3-acetic acid production by two rhizospheric unicellular cyanobacteria. J. Microbiol. Biotechnol. 4: 1015-1025.
  29. Bose A, Shah D, Keharia H. 2013. Production of indole-3-acetic-acid (IAA) by the white rot fungus Pleurotusostreatus under submerged condition of Jatropha seedcake. Mycology 4: 103-111. https://doi.org/10.1080/21501203.2013.823891
  30. Peng Y, He Y, Wu Z, Lu J, Li C. 2014. Screening and optimization of low-cost medium for Pseudomonas putida Rs-198 culture using RSM. Braz. J. Microbiol. 45: 1229-1237. https://doi.org/10.1590/S1517-83822014000400013
  31. Leveau JH, Lindow SE. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Microb. 71: 2365-2371. https://doi.org/10.1128/AEM.71.5.2365-2371.2005
  32. Park JM, Radhakrishnan R, Kang SM, Lee IJ. 2015. IAA producing Enterobacter sp. I-3 as a potent bio-herbicide candidate for weed control: A special reference with lettuce growth inhibition. Indian J. Microbiol. 55: 207-212. https://doi.org/10.1007/s12088-015-0515-y