DOI QR코드

DOI QR Code

Feasibility of Bioethanol Production from Cider Waste

  • Seluy, Lisandro G. (Departamento de Medio Ambiente. Facultad de Ingenieria y Ciencias Hidricas. Universidad Nacional del Litoral) ;
  • Comelli, Raul N. (Departamento de Medio Ambiente. Facultad de Ingenieria y Ciencias Hidricas. Universidad Nacional del Litoral) ;
  • Benzzo, Maria T. (Departamento de Medio Ambiente. Facultad de Ingenieria y Ciencias Hidricas. Universidad Nacional del Litoral) ;
  • Isla, Miguel A. (Departamento de Medio Ambiente. Facultad de Ingenieria y Ciencias Hidricas. Universidad Nacional del Litoral)
  • Received : 2018.01.24
  • Accepted : 2018.07.16
  • Published : 2018.09.28

Abstract

Wastewater from cider factories (losses during transfers, products discarded due to quality policies, and products returned from the market) exhibits a Chemical Oxygen Demand greater than $170,000mg\;O_2/l$, mainly due to the ethanol content and carbohydrates that are added to obtain the finished product. These effluents can represent up to 10% of the volume of cider produced, and they must be treated to meet environmental regulations. In this work, a process was developed, based on alcoholic fermentation of the available carbohydrates present in ciders. The impact of inhibitors at different pH, size and reuse of inoculums and different nutrient supplementation on the ethanol yield were evaluated. The use of a 0.5 g/l yeast inoculum and corn steep water as the nutrient source allowed for depletion of the sugars in less than 48 h, which increased the content of ethanol to more than 70 g/l.

Keywords

References

  1. Coton E, Coton M, Guichard H. 2016. Cider (Cyder; Hard Cider): The Product and Its Manufacture In: Encyclopedia of Food and Health, pp. 119-128. Elsevier Ltd, Amsterdam.
  2. Akbas MY, Stark BC. 2016. Recent trends in bioethanol production from food processing byproducts. J. Ind. Microbiol. Biotechnol. 43: 1593-1609. https://doi.org/10.1007/s10295-016-1821-z
  3. Isla MA, Comelli RN, Seluy LG. 2013. Wastewater from the soft drinks industry as a source for bioethanol production. Bioresour. Technol. 136: 140-147. https://doi.org/10.1016/j.biortech.2013.02.089
  4. Seluy LG, Isla MA. 2014. A process to treat high-strength brewery wastewater via ethanol recovery and vinasse fermentation. Ind. Eng. Chem. Res. 53: 17043-17050. https://doi.org/10.1021/ie500438j
  5. Rodrigues B, Peinado JM, Raposo S, Constantino A, Quintas C, Lima-Costa ME. 2016. Kinetic and energetic parameters of carob wastes fermentation by Saccharomyces cerevisiae: crabtree effect, ethanol toxicity, and invertase repression. J. Microbiol. Biotechnol. 25: 837-844.
  6. Arroyo-Lopez FN, Bautista-Gallego J, Duran-Quintana MC, Garrido-Fernandez A. 2008. Modeling the inhibition of sorbic and benzoic acids on a native yeast cocktail from table olives. Food Microbiol. 25: 566-574. https://doi.org/10.1016/j.fm.2008.02.007
  7. Chandra M, Oro I, Ferreira-Dias S, Malfeito-Ferreira M. 2015. Effect of ethanol, sulfur dioxide and glucose on the growth of wine spoilage yeasts using response surface methodology. PLoS One https//doi:10.1371/journal.pone.0128702.
  8. Du Toit WJ, Pretorius IS, Lonvaud-Funel A. 2005. The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine. J. Appl. Microbiol. 98: 862-871. https://doi.org/10.1111/j.1365-2672.2004.02549.x
  9. Herrero M, Garcia LA, Diaz M. 2003. The effect of SO2 on the production of ethanol, acetaldehyde, organic acids and flavor volatiles during industrial cider fermentation. J. Agric. Food Chem. 51: 3455-3459. https://doi.org/10.1021/jf021015e
  10. Reddy LVA, Reddy OVS. 2011. Effect of fermentation conditions on yeast growth and volatile composition of wine produced from mango (Mangifera indica L.) fruit juice. Food Bioprod. Process. 89: 487-491. https://doi.org/10.1016/j.fbp.2010.11.007
  11. Benjaphokee S, Hasegawa D, Yokota D, Asvarak T, Auesukaree C, Sugiyama M, et al. 2012. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. New Biotechnol. 29: 379-386. https://doi.org/10.1016/j.nbt.2011.07.002
  12. Jones RP, Greenfield PF. 1987. Specific and non-specific inhibitory effects of ethanol on yeast growth. Enzyme Microb. Technol. 9: 334-338. https://doi.org/10.1016/0141-0229(87)90055-X
  13. Lima-Costa ME, Tavares C, Raposo S, Rodrigues B, Peinado JM. 2012. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fedbatch. J. Ind. Microbiol. Biotechnol. 39: 789-797. https://doi.org/10.1007/s10295-011-1079-4
  14. Luo H, Niu Y, Duan C, Sub H, Yan G. 2017. A pH control strategy for increased ${\beta}$-carotene production during batch fermentation by recombinant industrial wine yeast. Proc. Biochem. 48: 195-200.
  15. Kelkar S, Dolan K. 2012. Modelling the effects of initial nitrogen content and temperature on fermentation kinetics of hard cider. J .Food. Eng. 109: 588-596. https://doi.org/10.1016/j.jfoodeng.2011.10.020
  16. Rausch KD, Thompson CI, Belyea RL, Tumbleson ME. 2003. Characterization of light gluten and light steep water from a corn wet milling plant. Bioresour. Technol. 90: 49-54. https://doi.org/10.1016/S0960-8524(03)00094-4
  17. Mahadevaswamy Usha R, Rastogi NK, Anu Appaiah KA. 2011. Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract - an agro-industry waste. J. Microbiol. Biotechnol. 21: 739-745 https://doi.org/10.4014/jmb.1012.12026
  18. Xiao X, Hou Y, Liu Y, Zhao H, Dong L, Du J, et al. 2013. Classification and analysis of corn steep liquor by UPLC/Q-TOF MS and HPLC. Talanta 107: 344-348. https://doi.org/10.1016/j.talanta.2013.01.044
  19. Khattak WA, Jung TK, Ha H, Ul-Islam M, Kang MK, Park JK. 2013. Enhanced production of bioethanol from waste of beer fermentation broth at high temperature through consecutive batch strategy by simultaneous saccharification and fermentation. Enzyme Microb. Technol. 53: 322-330. https://doi.org/10.1016/j.enzmictec.2013.07.004
  20. Comelli RN, Seluy LG, Isla MA. 2016. Optimization of a low-cost defined medium for alcoholic fermentation - a case study for potential application in bioethanol production from industrial wastewaters. New Biotechnol. 33: 107-115. https://doi.org/10.1016/j.nbt.2015.09.001
  21. Perez-Bibbins B, Torrado-Agrasar A, Perez-Rodriguez N, Aguilar-Uscanga MG, Dominguez JM. 2015. Evaluation of the liquid, solid and total fractions of beer, cider and wine lees as economic nutrient for xylitol production. J. Chem. Technol. Biotechnol. 90:1027-39. https://doi.org/10.1002/jctb.4405
  22. Eaton AD, Clescerl LS, Greenberg AE. 2000. Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, USA.
  23. Lie S. 1973. The ebc-ninhydrin method for determination of free alpha amino nitrogen. J. Inst. Brew. 79: 37-41. https://doi.org/10.1002/j.2050-0416.1973.tb03495.x
  24. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  25. Tonelli D. 2009. Methods for Determining Ethanol in Beer. In: Beer in Health and Disease Prevention. pp. 1055-1065. 1st Edition. Elsevier inc, Amsterdam.
  26. Walker GM. 2004. Metals in yeast fermentation processes. Adv. Appl. Microbiol. 54: 197-229.
  27. Li H, Luo MML, Zhang R, Pei H, Hu W. 2012. Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tándem mass spectrometry-based metabolomics approach. Int. J. Biochem. Cell Biol. 44: 1087-1096. https://doi.org/10.1016/j.biocel.2012.03.017
  28. Divol B, Du Toit M, Duckitt E. 2012. Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Appl. Microbiol. Biotechnol. 95: 601-613. https://doi.org/10.1007/s00253-012-4186-x
  29. Mira NP, Teixeira MC, Sa-Correia I. 2010. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS 14: 525-540. https://doi.org/10.1089/omi.2010.0072
  30. Vieira EF, Carvalho J, Pinto E, Cunha S, Almeida AA, Ferreira IMPLVO. 2016. Nutritive value, antioxidant activity and phenolic compounds profile of brewer's spent yeast extract. J. Food Compos. Anal. 52: 44-51. https://doi.org/10.1016/j.jfca.2016.07.006
  31. Gutierrez A, Chiva R, Sancho M, Beltran G, Arroyo-Lopez F, Guillamon J. 2012. Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must. Food Microbiol. 31: 25-32. https://doi.org/10.1016/j.fm.2012.02.012
  32. Saha BC. 2006. A low-cost medium for mannitol production by Lactobacillus intermedius NRRL B-3693. Appl. Microbiol. Biotechnol. 72: 676-680. https://doi.org/10.1007/s00253-006-0364-z
  33. Jin M, Gunawan C, Uppugundla N, Balan V, Dale BE. 2012. A novel integrated biological process for cellulosic ethanol production featuring high ethanol productivity, enzyme recycling and yeast cells reuse. Energy Environ. Sci. 5: 7168-7175. https://doi.org/10.1039/c2ee03058f
  34. Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S, Kong H. 2012. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47: 395-401. https://doi.org/10.1016/j.biombioe.2012.09.019

Cited by

  1. Metabolic Engineering for Improved Fermentation of L-Arabinose vol.29, pp.3, 2019, https://doi.org/10.4014/jmb.1812.12015