DOI QR코드

DOI QR Code

Protective Effect of Biological Osmolytes against Heat- and Chaotropic Agent-Induced Denaturation of Bacillus licheniformis γ-Glutamyl Transpeptidase

  • Lo, Huei-Fen (Department of Food Science and Technology, Hungkuang University) ;
  • Chi, Meng-Chun (Department of Applied Chemistry, National Chiayi University) ;
  • Lin, Min-Guan (Institute of Molecular Biology, Academia Sinica) ;
  • Lan, Yuan-Gin (Department of Applied Chemistry, National Chiayi University) ;
  • Wang, Tzu-Fan (Department of Applied Chemistry, National Chiayi University) ;
  • Lin, Long-Liu (Department of Applied Chemistry, National Chiayi University)
  • Received : 2018.05.08
  • Accepted : 2018.07.04
  • Published : 2018.09.28

Abstract

In the present study, the stabilizing effect of four different biological osmolytes on Bacillus licheniformis ${\gamma}$-glutamyl transpeptidase (BlGGT) was investigated. BlGGT appeared to be stable under temperatures below $40^{\circ}C$, but the enzyme retained less than 10% of its activity at $60^{\circ}C$. The tested osmolytes exhibited different degrees of effectiveness against temperature inactivation of BlGGT, and sucrose was found to be the most effective among these. The use of circular dichroism spectroscopy for studying the secondary structure of BlGGT revealed that the temperature-induced conformational change of the protein molecule could be prevented by the osmolytes. Consistently, the molecular structure of the enzyme was essentially conserved by the osmolytes at elevated temperatures as monitored by fluorescence spectroscopy. Sucrose was further observed to counteract guanidine hydrochloride (GdnHCl)-and urea-induced denaturation of BlGGT. Taken together, we observed evidently that some well-known biological osmolytes, especially sucrose, make a dominant contribution to the structural stabilization of BlGTT.

Keywords

References

  1. Zavodszky P, Kardos J, Svingor A, Petsko GA. 1998. Adjustment of conformational flexibility is a key event in the thermal adaption of proteins. Proc. Natl. Acad. Sci. USA 95: 7406-7411. https://doi.org/10.1073/pnas.95.13.7406
  2. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. 1982. Living with water stress: evolution of osmolyte systems. Science 217: 1214-1222. https://doi.org/10.1126/science.7112124
  3. Lamitina T, Huang CG, Strange K. 2006. Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression. Proc. Natl. Acad. Sci. USA 103: 12173-12178. https://doi.org/10.1073/pnas.0602987103
  4. Diamant S, Eliahu N, Rosenthal D, Goloubinoff P. 2001. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276: 39586-39591. https://doi.org/10.1074/jbc.M103081200
  5. Judy E, Kishore N. 2016. Biological wonders of osmolytes: the need to know more. Biochem. Anal. Biochem. 5: 4.
  6. Auton M, Rosgen J, Sinev M, Holthauzen LMF, Bolen DW. 2011. Osmolyte effects on protein stability and solubility: a balancing act between backbone and side-chains. Biophys. Chem. 159: 90-99. https://doi.org/10.1016/j.bpc.2011.05.012
  7. Garcia-Manyes S, Dougan L, Fernandez JM. 2009. Direct observation of an ensemble of stable collapsed states in the mechanical folding of ubiquitin. Proc. Natl. Acad. Sci. USA 106: 10540-10545. https://doi.org/10.1073/pnas.0902090106
  8. Harries D, J Rosgen J. 2008. A practical guide on how osmolytes modulate macromolecular properties. Methods Cell. Biol. 84: 679-735.
  9. Heyda J, Kozisek M, Bednarova L, Thompson G, Konvalinka J, Vondrasek J, et al. 2011. Urea- and guanidinium induced-denaturation of a Trp-cage miniprotein. J. Phys. Chem. B 115: 8910-8924. https://doi.org/10.1021/jp200790h
  10. Politi R, Harries D. 2010. Enthalpically-driven peptide stabilization by protective osmolytes. Chem. Commun. 46: 6449-6451. https://doi.org/10.1039/c0cc01763a
  11. Rashid N, Thapliyal C, Chaudhuri P.2017. Osmolyte-induced enhancement of expression and solubility of human dihydrofolate reductase: an in vivo study. Int. J. Biol. Macromol. 103: 1044-1053. https://doi.org/10.1016/j.ijbiomac.2017.05.143
  12. Thapliyal C, Chaudhuri P. 2015. Effect of various osmolytes on the expression and functionality of zebrafish dihydrofolate reductase: an in vivo study. J. Proteins Proteomics 6: 211-218.
  13. Costanzo JP. 2005. Cryoprotection by urea in a terrestrially hibernating frog. J. Exp. Biol. 208: 4079-4089. https://doi.org/10.1242/jeb.01859
  14. Sakamoto A, Murata N. 2002. The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ. 25: 163-171. https://doi.org/10.1046/j.0016-8025.2001.00790.x
  15. Shimizu S, Smith PE. 2017. How osmolytes counteract pressure denaturation on a molecular scale. Chemphyschem 18: 2243-2249. https://doi.org/10.1002/cphc.201700503
  16. Yancey PH, Speers-Roesch B, Atchinson S, Reist JD, Majewski AR, Treberg JR. 2018. Osmolyte adjustments as a pressure adaptation in deep-sea chondrichthyan fishes: an intraspecific test in arctic skates (Amblyraja hyperborean) along a depth gradient. Physiol. Biochem. Zool. 91: 788-796. https://doi.org/10.1086/696157
  17. Keillor JW, Castonguay R, Lherbet C. 2005. ${\gamma}$-Glutamyl transpeptidase substrate specificity and catalytic mechanism. Methods Enzymol. 401: 449-467.
  18. Tate SS, Meister A. 1974. Interaction of ${\gamma}$-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione. J. Biol. Chem. 249: 7593-7602.
  19. Castonguay R, Lherbet C, Keillor JW. 2003. Kinetic studies of rat kidney ${\gamma}$-glutamyl transpeptidase deacylation reveal a general base-catalyzed mechanism. Biochemistry 42: 11504-11513. https://doi.org/10.1021/bi035064b
  20. Thompson GA, Meister A. 1976. Hydrolysis and transfer reactions catalyzed by ${\gamma}$-glutamyl transpeptidase: evidence for separate substrate sites and the high affinity of L-cysteine. Biochem. Biophys. Res. Commun. 71: 32-36. https://doi.org/10.1016/0006-291X(76)90245-X
  21. Lherbet C, Keiller JW. 2004. Probing the stereochemistry of the active site of ${\gamma}$-glutamyl transpeptidase using sulfur derivatives of L-glutamic acid. Org. Biomol. Chem. 2: 238-245. https://doi.org/10.1039/b310767a
  22. Han L, Hiratake J, Kamiyama A, Sakata K. 2007. Design, synthesis, and evaluation of ${\gamma}$-phosphonodiester analogues of glutamate as highly potent inhibitors and active site probes of ${\gamma}$-glutamyl transpeptidase. Biochemistry 46: 1432-1447. https://doi.org/10.1021/bi061890j
  23. Suzuki H, Yamada C, Kato K. 2007. ${\gamma}$-Glutamyl compounds and their enzymatic production using bacterial ${\gamma}$-glutamyl transpetidase. Amino Acids 32: 333-340. https://doi.org/10.1007/s00726-006-0416-9
  24. Castellano I, Merlino A. 2012. ${\gamma}$-Glutamyl transpeptidases: sequence, structure, biochemical properties, and biotechnological applications. Cell. Mol. Life Sci. 69: 3381-3394. https://doi.org/10.1007/s00018-012-0988-3
  25. Speranza G, Morelli CF. 2012. ${\gamma}$-Glutamyl transpeptidase-catalyzed synthesis of naturally occurring flavor enhancers. J. Mol. Catal. B Enzym. 84: 65-71. https://doi.org/10.1016/j.molcatb.2012.03.014
  26. Mu W, Zhang T, Jiang B. 2015. An overview of biological production of L-theanine. Biotechnol. Adv. 33: 335-342. https://doi.org/10.1016/j.biotechadv.2015.04.004
  27. Wohlgemuth R. 2010. Biocatalysis-key to sustainable industrial chemistry. Curr. Opin. Biotechnol. 21: 713-724. https://doi.org/10.1016/j.copbio.2010.09.016
  28. Nestl BM, Nebel BA, Hauer B. 2011. Recent progress in industrial biocatalysis. Curr. Opin. Chem. Biol. 15: 187-193. https://doi.org/10.1016/j.cbpa.2010.11.019
  29. Sarrouh B, Santos TM, Miyoshi A, Dias R, Azevedo V. 2012. Up-to-date insight on industrial enzymes applications and global market. J. Bioprocess Biotechniq. S4: 002.
  30. Singh R, Kumar M, Mittal A, Mehta PK. 2016. Microbial enzymes: industrial progress in 21st century. 3 Biotech 6: 174.
  31. Iyer PV, Ananthanarayan L. 2008. Enzyme stability and stabilization - aqueous and non-aqueous environment. Process Biochem. 43: 1019-1032. https://doi.org/10.1016/j.procbio.2008.06.004
  32. Sharma S, Pathak N, Chattopadhyay K. 2012. Osmolyte induced stabilization of protein molecules: a brief review. J. Proteins Proteomics 3: 129-139.
  33. Lin LL, Chou PR, Hua YW, Hsu WH. 2006. Overexpression, one-step purification, and biochemical characterization of a recombinant ${\gamma}$-glutamyl transpeptidase from Bacillus licheniformis. Appl. Microbiol. Biotechnol. 73: 103-112. https://doi.org/10.1007/s00253-006-0440-4
  34. Kelly SM, Jess TJ, Price NC. 2005. How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751: 119-139. https://doi.org/10.1016/j.bbapap.2005.06.005
  35. Greenfield NJ. 2004. Analysis of circular dichroism data. Methods Enzymol. 383: 282-317.
  36. Royer CA. 2006. Probing protein folding and conformational transitions with fluorescence. Chem. Rev. 106: 1769-1784. https://doi.org/10.1021/cr0404390
  37. Yang JC, Liang WC, Chen YY, Chi MC, Lo HF, Chen HL, et al. 2011. Biophysical characterization of Bacillus licheniformis and Escherichia coli ${\gamma}$-glutamyl transpeptidases: a comparative analysis. Int. J. Biol. Macromol. 48: 414-422. https://doi.org/10.1016/j.ijbiomac.2011.01.006
  38. Chi MC, Lo YH, Chen YY, Lin LL, Merlino A. 2014. ${\gamma}$-Glutamyl transpeptidase architecture: effect of extra sequence deletion on autoprocessing, structure and stability of the protein from Bacillus licheniformis. Biochim. Biophys. Acta 1844: 2290-2297. https://doi.org/10.1016/j.bbapap.2014.09.001
  39. Lin LL, Chen YY, Chi MC, Merlino A. 2014. Low-resolution X-ray structure of ${\gamma}$-glutamyl transpeptidase from Bacillus licheniformis: opened active site cleft and a cluster of acid residues potentially involved in the recognition of a metal ion. Biochim. Biophys. Acta 1844: 1523-1529. https://doi.org/10.1016/j.bbapap.2014.04.016
  40. Lin MG, Chi MC, Chen YY, Wang TF, Lo HF, Lin LL 2016. Site-directed mutagenesis of a conserved Asn450 residue of Bacillus licheniformis ${\gamma}$-glutamyl transpeptidase. Int. J. Biol. Macromol. 91: 416-425. https://doi.org/10.1016/j.ijbiomac.2016.05.101
  41. Klibanov AM. 1983. Stabilization of enzymes against thermal inactivation. Adv. Appl. Microbiol. 29: 1-28.
  42. Hu HY, Yang JC, Chen JH, Chi MC, Lin LL. 2012. Enzymatic characterization of Bacillus licheniformis ${\gamma}$-glutamyl transpeptidase fused with N-terminally truncated forms of Bacillus sp. TS-23 ${\alpha}$-amylase. Enzyme Microb. Technol. 51: 86-94. https://doi.org/10.1016/j.enzmictec.2012.04.005
  43. Ptitsyn OB. 1995. Molten globule and protein folding. Adv. Protein Chem. 47: 83-229.
  44. Chi MC, Chen YY, Lo HF, Lin LL. 2012. Experimental evidence for the involvement of amino acid residue Glu398 in the autocatalytic processing of Bacillus licheniformis ${\gamma}$-glutamyl transpeptidase. FEBS Open Bio 2: 298-304. https://doi.org/10.1016/j.fob.2012.09.007
  45. Lakowicz JR. 2006. Protein fluorescence. In: Principles of Fluorescence Spectroscopy, pp 529-575, Springer, Boston, MA.
  46. Yancey PH, Somero GN. 1980. Methylamine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. J. Exp. Zool. 212: 1214-1222.
  47. Timasheff SN. 1993. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Ann. Rew. Biophys. Biomol. Struct. 22: 67-97. https://doi.org/10.1146/annurev.bb.22.060193.000435
  48. Zou Q, Bennion BJ, Daggett V, Murphy KP. 2002. The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effect of urea. J. Am. Chem. Soc. 54: 4125-4139.
  49. Arakawa T, Timasheff SN. 1982. Stabilization of protein structure by sugars. Biochemistry 21: 6536-6544. https://doi.org/10.1021/bi00268a033
  50. Garrett JM, Stairs RA, Annett RG. 1988. Thermal denaturation and coagulation of whey proteins: effect of sugars. J. Dairy Sci. 71: 10-16. https://doi.org/10.3168/jds.S0022-0302(88)79518-1
  51. Oshima H, Kinoshita M. 2013. Effects of sugars on the thermal stability of a protein. J. Phys. Chem. 138: 245101. https://doi.org/10.1063/1.4811287
  52. Graziano G. 2012. How does sucrose stabilize the native state of globular proteins? Int. J. Biol. Macromol. 50: 230-235. https://doi.org/10.1016/j.ijbiomac.2011.10.025
  53. Street TO, Bolen DW, Rose DW. 2006. A molecular mechanism for osmolyte-induced protein stability. Proc. Natl. Acad. Sci. USA 103: 13997-14002. https://doi.org/10.1073/pnas.0606236103
  54. Holthauzen LM, Rosgen J, Bolen DW. 2010. Hydrogen bonding progressively strengthens upon transfer from the protein urea-denatured state to water and protecting osmolytes. Biochemistry 49: 1310-1318. https://doi.org/10.1021/bi9015499
  55. Timasheff SN. 2002. Protein-solvent preferential interactions, protein hydration and the modulation of biochemical reactions by solvent components. Proc. Natl. Acad. Sci. USA 99: 9721-9726. https://doi.org/10.1073/pnas.122225399
  56. Singh R, Haque I, Ahmad F. 2005. Counteracting osmolyte trimethylamine N-oxide destabilizes proteins at pH below its pKa. J. Biol. Chem. 280: 1035-1042.
  57. Santoro MM, Liu Y, Khan SMA, Hou LX, Bolen DW. 1992. Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry 31: 5278-5283. https://doi.org/10.1021/bi00138a006
  58. Kaushik JK, Bhat R. 1998. Thermal stability of proteins in aqueous polyol solutions: role of the surface tension of water in the stabilizing effect of polyols. J. Phys. Chem. 102: 7058-7066. https://doi.org/10.1021/jp981119l
  59. Bruzdziak P, Panuszko A, Jourdan M, Stangret J. 2016. Protein thermal stabilization in aqueous solutions of osmolytes. ActaBiochim. Pol. 63: 65-70.
  60. Liu Y, Bolen DW. 1995. The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry 34: 12884-12891. https://doi.org/10.1021/bi00039a051
  61. Tsou CL. 1995. Inactivation precedes overall molecular conformation changes during enzyme denaturation. Biochim. Biophys. Acta 1253: 151-162. https://doi.org/10.1016/0167-4838(95)00172-5
  62. Bennion BJ, Daggett V. 2003. The molecular basis for the chemical denaturation of proteins by urea. Proc. Natl. Acad. Sci. USA 100: 5142-5147. https://doi.org/10.1073/pnas.0930122100
  63. Taylor LS, York P, Williams AC, Edwards HC, Mehta V, Jackson GS, et al. 1995. Sucrose reduces the efficiency of protein denaturation by a chaotropic agent. Biochim. Biophys. Acta 1253: 39-46. https://doi.org/10.1016/0167-4838(95)00142-H
  64. Chen BL, Arakawa T. 1996. Stabilization of recombinant human keratinocyte growth factor by osmolytes and salts. J. Pharm. Sci. 85: 419-426. https://doi.org/10.1021/js9504393
  65. Ou WB, Park YD, Zhou HM. 2001. Molecular mechanism for osmolyte protection of creatine kinase against guanidine denaturation. Eur. J. Biochem. 268: 5901-5911. https://doi.org/10.1046/j.0014-2956.2001.02539.x
  66. Kim YS, Jones LS, Dong A, Kendrick BS, Chang BS, Manning MC, et al. 2003. Effects of sucrose on conformational equilibria and fluctuations within the native-state ensemble of proteins. Protein Sci. 12: 1252-1261. https://doi.org/10.1110/ps.0242603
  67. Wang A, Bolen DW. 1997. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of protein against urea denaturation. Biochemistry 36: 9101-9108. https://doi.org/10.1021/bi970247h
  68. Burg MB, Ferraris JD. 2008. Intracellular organic osmolytes: function and regulation. J. Biol. Chem. 283: 7309-7313. https://doi.org/10.1074/jbc.R700042200
  69. Almarza J, Rincon L, Bahsas A, Brito F. 2009. Molecular mechanism for the denaturation of proteins by urea. Biochemistry 48: 7608-7613. https://doi.org/10.1021/bi9007116
  70. Hua L, Zhou R, Thirumalai D, Berne BJ. 2008. Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. Proc. Natl. Acad. Sci. USA 105: 16928-16933. https://doi.org/10.1073/pnas.0808427105
  71. Singh LR, Poddar NK, Dar TA, Kumar R, Ahmad F. 2011. Protein and DNA destabilization by osmolytes: the other side of the coin. Life Sci. 88: 117-125. https://doi.org/10.1016/j.lfs.2010.10.020
  72. Kelly RH, Yancey PH. 1999. High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans. Biol. Bull. 196: 18-25. https://doi.org/10.2307/1543162
  73. Venkatesu P, Lee MJ, Lin HM. 2009. Osmolyte counteracts urea-induced denaturation of ${\alpha}$-chymotrypsin. J. Phys. Chem. 113: 5327-5338. https://doi.org/10.1021/jp8113013