References
- Ericson JE, Popoola VO, Smith PB, Benjamin DK, Fowler VG, Jr BD, et al. 2015. Burden of invasive Staphylococcus aureus infections in hospitalized infants. JAMA Pediatr. 169: 1198-1205.
- Defres S, Marwick C, Nathwani D. 2009. MRSA as a cause of lung infection including airway infection, community-acquired pneumonia and hospital-acquired pneumonia. Eur. Respir. J. 34: 1470-1476. https://doi.org/10.1183/09031936.00122309
- Ippolito G, Leone S, Lauria FN, Nicastri E, Wenzel RP. 2010. Methicillin-resistant Staphylococcus aureus: the superbug. Int. J. Infect. Dis. 14: S7-11.
- Boyle-Vavra S, Daum RS. 2007. Community-acquired methicillin-resistant Staphylococcus aureus: the role of Panton-Valentine leukocidin. Lab. Invest. 87: 3-9. https://doi.org/10.1038/labinvest.3700501
- Zetola N, Francis JS, Nuermberger EL, Bishai WR. 2005. Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis. 5: 275-286. https://doi.org/10.1016/S1473-3099(05)70112-2
- Woodin KA, Morrison SH. 1994. Antibiotics: mechanisms of action. Pediatr. Rev. 15: 440-447. https://doi.org/10.1542/pir.15-11-440
- Rasko DA, Sperandio V. 2010. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 9: 117-128. https://doi.org/10.1038/nrd3013
- Sekirov I, Tam NM, Jogova M, Robertson ML, Li Y, Lupp C, et al. 2008. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect. Immun. 76: 4726-4736. https://doi.org/10.1128/IAI.00319-08
- Smeltzer MS. 2016. Staphylococcus aureus pathogenesis: the importance of reduced cytotoxicity. Trends Microbiol. 24: 681-682. https://doi.org/10.1016/j.tim.2016.07.003
- Foster TJ, Hook M. 1998. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6: 484-488. https://doi.org/10.1016/S0966-842X(98)01400-0
- Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ. 2008. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol. Nature Rev. Microbiol. 6: 17-27. https://doi.org/10.1038/nrmicro1818
- Clatworthy AE, Pierson E, Hung DT. 2011. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 3: 541-548.
- Kruger RG, Otvos B, Frankel BA, Bentley M, Patrick Dostal A, Mccafferty DG. 2004. Analysis of the substrate specificity of the Staphylococcus aureus sortase transpeptidase SrtA. Biochemistry 43: 1541-1551. https://doi.org/10.1021/bi035920j
- Maresso AW, Schneewind O. 2008. Sortase as a target of anti-infective therapy. Pharmacol. Rev. 60: 128-141. https://doi.org/10.1124/pr.107.07110
- Silva LN, Zimmer KR, Macedo AJ, Trentin DS. 2016. Plant natural products targeting bacterial virulence factors. Chem. Rev. 116: 9162-9236. https://doi.org/10.1021/acs.chemrev.6b00184
- Kong C, Neoh HM, Nathan S. 2016. Targeting Staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins (Basel) 8: 72. https://doi.org/10.3390/toxins8030072
- Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. 2007. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6: 29-40. https://doi.org/10.1038/nrd2201
- He M, Min JW, Kong WL, He XH, Li JX, Peng BW. 2016. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115: 74-85. https://doi.org/10.1016/j.fitote.2016.09.011
- Ganesan K, Xu B. 2017. Molecular targets of vitexin and isovitexin in cancer therapy: a critical review. Ann. NY Acad. Sci. 1401: 102-113. https://doi.org/10.1111/nyas.13446
- GA D, AR S, LS B, RC B, PP M, BS V, et al. 2015. Redox-active profile characterization of remirea maritima extracts and its cytotoxic effect in mouse fibroblasts (L929) and melanoma (B16F10) cells. Molecules 20: 11699-11718. https://doi.org/10.3390/molecules200711699
- Lee CY, Chien YS, Chiu TH, Huang WW, Lu CC, Chiang JH, et al. 2012. Apoptosis triggered by vitexin in U937 human leukemia cells via a mitochondrial signaling pathway. Oncol. Rep. 28: 1883-1888. https://doi.org/10.3892/or.2012.2000
- Chen F, Liu B, Wang D, Wang L, Deng X, Bi C, et al. 2014. Role of sortase A in the pathogenesis of Staphylococcus aureus-induced mastitis in mice. FEMS Microbiol. Lett. 351: 95-103. https://doi.org/10.1111/1574-6968.12354
- Changsheng Lu, Zhu J, Wang Y, Umeda A, Cowmeadow RB, Lai E, et al. 2007. Staphylococcus aureus sortase A exists as a dimeric protein in vitro. Biochemistry 46: 9346-9354. https://doi.org/10.1021/bi700519w
- Kim ES, Kang SY, Kim YH, Lee YE, Choi NY, You YO, et al. 2015. Chamaecyparis obtusa essential oil inhibits methicillin-resistant Staphylococcus aureus biofilm formation and expression of virulence factors. J. Med. Food. 18: 810-817. https://doi.org/10.1089/jmf.2014.3309
- Mazmanian SK, Ton-That H, Su K, Schneewind O. 2002. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc. Natl. Acad. Sci. USA 99: 2293-2298. https://doi.org/10.1073/pnas.032523999
- Ton-That H, Liu G, Mazmanian SK, Faull KF, Schneewind O. 1999. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA 96: 12424-12329. https://doi.org/10.1073/pnas.96.22.12424
- Lopes LAA, dos Santos Rodrigues JB, Magnani M, de Souza EL, de Siqueira-Junior JP. 2017. Inhibitory effects of flavonoids on biofilm formation by Staphylococcus aureus that overexpresses efflux protein genes. Microb. Pathog. 107: 193-197. https://doi.org/10.1016/j.micpath.2017.03.033
- Oh KB, Oh MN, Kim JG, Shin DS, Shin J. 2006. Inhibition of sortase-mediated Staphylococcus aureus adhesion to fibronectin via fibronectin-binding protein by sortase inhibitors. Appl. Microbiol. Biotechnol. 70: 102-106. https://doi.org/10.1007/s00253-005-0040-8
- Sinha B, Francois PP, Nusse O, Foti M, Hartford OM, Vaudaux P, et al. 1999. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin alpha5beta1. Cell. Microbiol. 1: 101-117. https://doi.org/10.1046/j.1462-5822.1999.00011.x
- O'Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A, et al. 2008. A novel staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J. Bacteriol. 190: 3835-3850. https://doi.org/10.1128/JB.00167-08
- Asadollahi P, Farahani NN, Mirzaii M, Khoramrooz SS, Van Belkum A, Asadollahi K, et al. 2018. Distribution of the most prevalent spa types among clinical isolates of methicillin-resistant and -susceptible Staphylococcus aureus around the world: a review. Front Microbiol. 9: 163. https://doi.org/10.3389/fmicb.2018.00163
- Sibbald MJ, Ziebandt AK, Engelmann S, Hecker M, De JA, Harmsen HJ, et al. 2006. Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. Microbiol. Mol. Biol. Rev. 70: 755-788. https://doi.org/10.1128/MMBR.00008-06
- Schneewind O, Mihaylova-Petkov D, Model P. 1993. Cell wall sorting signals in surface proteins of gram-positive bacteria. EMBO J. 12: 4803-4811. https://doi.org/10.1002/j.1460-2075.1993.tb06169.x
- Lowy FD. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339: 520-532. https://doi.org/10.1056/NEJM199808203390806
- Allen H, Donato J, Wang H, Cloud-Hansen K, Davies J, Handelsman J. 2010. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8: 251-259. https://doi.org/10.1038/nrmicro2312
- Foster TJ, Geoghegan JA, Ganesh VK, Hook M. 2014. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 12: 49-62. https://doi.org/10.1038/nrmicro3161
- Geoghegan JA, Foster TJ. 2015. Cell wall-anchored surface proteins of Staphylococcus aureus: many proteins, multiple functions. Curr. Top. Microbiol. Immunol. 409: 95-120.
- Wang L, Bi C, Cai H, Liu B, Zhong X, Deng X, et al. 2015. The therapeutic effect of chlorogenic acid against Staphylococcus aureus infection through sortase A inhibition. Front Microbiol. 6: 1031.
- Kang SS, Kim JG, Lee TH, Oh KB. 2006. Flavonols inhibit sortases and sortase-mediated Staphylococcus aureus clumping to fibrinogen. Biol. Pharm. Bull. 29: 1751-1755. https://doi.org/10.1248/bpb.29.1751
- Yang WY, Kim CK, Ahn CH, Kim H, Shin J, Oh KB. 2016. Flavonoid glycosides inhibit sortase A and sortase A-mediated aggregation of streptococcus mutans, an oral bacterium responsible for human dental caries. J. Microbiol. Biotechnol. 26: 1566-1569. https://doi.org/10.4014/jmb.1605.05005
- Liu B, Chen F, Bi C, Wang L, Zhong X, Cai H, et al. 2015. Quercitrin, an inhibitor of sortase A, interferes with the adhesion of Staphylococcal aureus. Molecules 20: 6533-6543. https://doi.org/10.3390/molecules20046533
- Bi C, Dong X, Zhong X, Cai H, Wang D, Wang L. 2016. Acacetin protects mice from staphylococcus aureus bloodstream infection by inhibiting the activity of sortase A. Molecules 21: 1285. https://doi.org/10.3390/molecules21101285
- Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades JR. 2001. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 183: 2888-2896. https://doi.org/10.1128/JB.183.9.2888-2896.2001
- Corrigan RM, Rigby D, Handley P, Foster TJ. 2007. The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology 153: 2235-2246.
- Moks T, Abrahmsen L, Nilsson B, Hellman U, Sjoquist J, Uhlen M. 1986. Staphylococcal protein A consists of five IgG-binding domains. Eur. J. Biochem. 156: 637-643. https://doi.org/10.1111/j.1432-1033.1986.tb09625.x
- Dedent AC, Mcadow M, Schneewind O. 2007. Distribution of protein A on the surface of Staphylococcus aureus. J. Bacteriol. 189: 4473-4484. https://doi.org/10.1128/JB.00227-07
- Mazmanian SK, Liu G, Jensen ER, Lenoy E, Schneewind O. 2000. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA 97: 5510-5515. https://doi.org/10.1073/pnas.080520697
Cited by
- Inhibitory effect of a natural phenolic compound, 3-p-trans-coumaroyl-2-hydroxyquinic acid against the attachment phase of biofilm formation of Staphylococcus aureus through targeting sortase A vol.9, pp.56, 2018, https://doi.org/10.1039/c9ra05883d
- Developing natural products as potential anti-biofilm agents vol.14, pp.None, 2019, https://doi.org/10.1186/s13020-019-0232-2
- Natural Products That Target Virulence Factors in Antibiotic-Resistant Staphylococcus aureus vol.67, pp.48, 2018, https://doi.org/10.1021/acs.jafc.9b05595
- Phytochemical Composition and In Vitro Biological Activity of Iris spp. (Iridaceae): A New Source of Bioactive Constituents for the Inhibition of Oral Bacterial Biofilms vol.9, pp.7, 2020, https://doi.org/10.3390/antibiotics9070403
- Targeting Bacterial Sortases in Search of Anti-virulence Therapies with Low Risk of Resistance Development vol.14, pp.5, 2018, https://doi.org/10.3390/ph14050415
- Staphylococcal Infections: Host and Pathogenic Factors vol.9, pp.5, 2021, https://doi.org/10.3390/microorganisms9051080
- New Unnatural Gallotannins: A Way toward Green Antioxidants, Antimicrobials and Antibiofilm Agents vol.10, pp.8, 2018, https://doi.org/10.3390/antiox10081288
- Chemical Biology of Sortase A Inhibition: A Gateway to Anti-infective Therapeutic Agents vol.64, pp.18, 2018, https://doi.org/10.1021/acs.jmedchem.1c00386
- Isovitexin attenuates tumor growth in human colon cancer cells through the modulation of apoptosis and epithelial-mesenchymal transition via PI3K/Akt/mTOR signaling pathway vol.99, pp.6, 2018, https://doi.org/10.1139/bcb-2021-0045
- Identification of Novel Antistaphylococcal Hit Compounds Targeting Sortase A vol.26, pp.23, 2021, https://doi.org/10.3390/molecules26237095