DOI QR코드

DOI QR Code

Experimental In Vivo Models of Bacterial Shiga Toxin-Associated Hemolytic Uremic Syndrome

  • Jeong, Yu-Jin (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Sung-Kyun (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoon, Sung-Jin (Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Young-Jun (Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Moo-Seung (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2018.03.13
  • Accepted : 2018.04.28
  • Published : 2018.09.28

Abstract

Shiga toxins (Stxs) are the main virulence factors expressed by the pathogenic Stx-producing bacteria, namely, Shigella dysenteriae serotype 1 and certain Escherichia coli strains. These bacteria cause widespread outbreaks of bloody diarrhea (hemorrhagic colitis) that in severe cases can progress to life-threatening systemic complications, including hemolytic uremic syndrome (HUS) characterized by the acute onset of microangiopathic hemolytic anemia and kidney dysfunction. Shiga toxicosis has a distinct pathogenesis and animal models of Stx-associated HUS have allowed us to investigate this. Since these models will also be useful for developing effective countermeasures to Stx-associated HUS, it is important to have clinically relevant animal models of this disease. Multiple studies over the last few decades have shown that mice injected with purified Stxs develop some of the pathophysiological features seen in HUS patients infected with the Stx-producing bacteria. These features are also efficiently recapitulated in a non-human primate model (baboons). In addition, rats, calves, chicks, piglets, and rabbits have been used as models to study symptoms of HUS that are characteristic of each animal. These models have been very useful for testing hypotheses about how Stx induces HUS and its neurological sequelae. In this review, we describe in detail the current knowledge about the most well-studied in vivo models of Stx-induced HUS; namely, those in mice, piglets, non-human primates, and rabbits. The aim of this review is to show how each human clinical outcome-mimicking animal model can serve as an experimental tool to promote our understanding of Stx-induced pathogenesis.

Keywords

References

  1. Melton-Celsa AR. 2014. Shiga toxin (Stx) classification, structure, and function. Microbiol. Spectr. 2: EHEC-0024-2013.
  2. Lingwood CA, Binnington B, Manis A, Branch DR. 2010. Globotriaosyl ceramide receptor function - where membrane structure and pathology intersect. FEBS Lett. 584: 1879-1886. https://doi.org/10.1016/j.febslet.2009.11.089
  3. Johannes L, Popoff V. 2008. Tracing the retrograde route in protein trafficking. Cell 135: 1175-1187. https://doi.org/10.1016/j.cell.2008.12.009
  4. Gargantini L, Calzi P, Brunelli V, Braggion F, Chiumello G. 1989. [Growth and puberal development in males with adreno-genital syndrome]. Pediatr. Med. Chir. 11: 597-602.
  5. Cherla RP, Lee SY, Mulder RA, Lee MS, Tesh VL. 2009. Shiga toxin 1-induced proinflammatory cytokine production is regulated by the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway. Infect. Immun. 77: 3919-3931. https://doi.org/10.1128/IAI.00738-09
  6. Lee MS, Cherla RP, Jenson MH, Leyva-Illades D, Martinez-Moczygemba M, Tesh VL. 2011. Shiga toxins induce autophagy leading to differential signalling pathways in toxin-sensitive and toxin-resistant human cells. Cell. Microbiol. 13: 1479-1496. https://doi.org/10.1111/j.1462-5822.2011.01634.x
  7. Lee MS, Koo S, Jeong DG, Tesh VL. 2016. Shiga toxins as multi-functional proteins: induction of host cellular stress responses, role in pathogenesis and therapeutic applications. Toxins (Basel) 8.
  8. Lee MS, Kwon H, Lee EY, Kim DJ, Park JH, Tesh VL, et al. 2016. Shiga toxins activate the NLRP3 inflammasome pathway to promote both production of the proinflammatory cytokine interleukin-1beta and apoptotic cell death. Infect. Immun. 84: 172-186. https://doi.org/10.1128/IAI.01095-15
  9. Lee MS, Kwon H, Nguyen LT, Lee EY, Lee CY, Choi SH, et al. 2016. Shiga toxins trigger the secretion of Lysyl-tRNA synthetase to enhance proinflammatory responses. J. Microbiol. Biotechnol. 26: 432-439. https://doi.org/10.4014/jmb.1511.11056
  10. Boyce M, Yuan J. 2006. Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ. 13: 363-373. https://doi.org/10.1038/sj.cdd.4401817
  11. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. 2001. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107: 881-891. https://doi.org/10.1016/S0092-8674(01)00611-0
  12. Ron D, Walter P. 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8: 519-529. https://doi.org/10.1038/nrm2199
  13. Oyadomari S, Mori M. 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11: 381-389. https://doi.org/10.1038/sj.cdd.4401373
  14. Lee SY, Lee MS, Cherla RP, Tesh VL. 2008. Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells. Cell. Microbiol. 10: 770-780. https://doi.org/10.1111/j.1462-5822.2007.01083.x
  15. Fraser ME, Chernaia MM, Kozlov YV, James MN. 1994. Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 A resolution. Nat. Struct. Biol. 1: 59-64. https://doi.org/10.1038/nsb0194-59
  16. Fraser ME, Fujinaga M, Cherney MM, Melton-Celsa AR, Twiddy EM, O'Brien AD, et al. 2004. Structure of Shiga toxin type 2 (Stx2) from Escherichia coli O157:H7. J. Biol. Chem. 279: 27511-27517. https://doi.org/10.1074/jbc.M401939200
  17. Trofa AF, Ueno-Olsen H, Oiwa R, Yoshikawa M. 1999. Dr. Kiyoshi Shiga: discoverer of the dysentery bacillus. Clin. Infect. Dis. 29: 1303-1306. https://doi.org/10.1086/313437
  18. Hale TL, Keusch GT. 1996. Shigella, pp. In th, Baron S (eds.), Medical Microbiology, Ed., Galveston (TX)
  19. Butler T. 2012. Haemolytic uraemic syndrome during shigellosis. Trans. R. Soc. Trop. Med. Hyg. 106: 395-399. https://doi.org/10.1016/j.trstmh.2012.04.001
  20. Hamano S, Nakanishi Y, Nara T, Seki T, Ohtani T, Oishi T, et al. 1993. Neurological manifestations of hemorrhagic colitis in the outbreak of Escherichia coli O157:H7 infection in Japan. Acta Paediatr. 82: 454-458. https://doi.org/10.1111/j.1651-2227.1993.tb12721.x
  21. Taylor CM, White RH, Winterborn MH, Rowe B. 1986. Haemolytic-uraemic syndrome: clinical experience of an outbreak in the West Midlands. Br. Med. J. (Clin. Res. Ed.). 292: 1513-1516. https://doi.org/10.1136/bmj.292.6534.1513
  22. Krogvold L, Henrichsen T, Bjerre A, Brackman D, Dollner H, Gudmundsdottir H, et al. 2011. Clinical aspects of a nationwide epidemic of severe haemolytic uremic syndrome (HUS) in children. Scand. J. Trauma Resusc. Emerg. Med. 19: 44. https://doi.org/10.1186/1757-7241-19-44
  23. Upadhyaya K, Barwick K, Fishaut M, Kashgarian M, Siegel NJ. 1980. The importance of nonrenal involvement in hemolytic-uremic syndrome. Pediatrics 65: 115-120.
  24. Verweyen HM, Karch H, Allerberger F, Zimmerhackl LB. 1999. Enterohemorrhagic Escherichia coli (EHEC) in pediatric hemolytic-uremic syndrome: a prospective study in Germany and Austria. Infection 27: 341-347. https://doi.org/10.1007/s150100050040
  25. Tarr PI, Gordon CA, Chandler WL. 2005. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365: 1073-1086.
  26. Gianantonio CA, Vitacco M, Mendilaharzu F, Gallo GE, Sojo ET. 1973. The hemolytic-uremic syndrome. Nephron 11: 174-192. https://doi.org/10.1159/000180229
  27. Gyles CL. 2007. Shiga toxin-producing Escherichia coli: an overview. J. Anim. Sci. 85: E45-62. https://doi.org/10.2527/jas.2006-508
  28. Eklund M, Leino K, Siitonen A. 2002. Clinical Escherichia coli strains carrying stx genes: stx variants and stx-positive virulence profiles. J. Clin. Microbiol. 40: 4585-4593. https://doi.org/10.1128/JCM.40.12.4585-4593.2002
  29. Tahamtan Y, Hayati M, Namavari M. 2010. Prevalence and distribution of the stx, stx genes in Shiga toxin-producing E. coli (STEC) isolates from cattle. Iran J. Microbiol. 2: 8-13.
  30. Johannes L, Romer W. 2010. Shiga toxins-from cell biology to biomedical applications. Nat. Rev. Microbiol. 8: 105-116. https://doi.org/10.1038/nrmicro2279
  31. Centers for Disease C, Prevention. 2010. Two multistate outbreaks of Shiga toxin-producing Escherichia coli infections linked to beef from a single slaughter facility - United States, 2008. MMWR Morb. Mortal. Wkly. Rep. 59: 557-560.
  32. Heiman KE, Mody RK, Johnson SD, Griffin PM, Gould LH. 2015. Escherichia coli O157 Outbreaks in the United States, 2003-2012. Emerg. Infect. Dis. 21: 1293-1301.
  33. Cleary TG. 1988. Cytotoxin-producing Escherichia coli and the hemolytic uremic syndrome. Pediatr. Clin. North Am. 35: 485-501. https://doi.org/10.1016/S0031-3955(16)36467-7
  34. Karmali MA, Petric M, Lim C, Fleming PC, Arbus GS, Lior H. 1985. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J. Infect. Dis. 151: 775-782. https://doi.org/10.1093/infdis/151.5.775
  35. Loudon SE, Dorresteijn EM, Catsman-Berrevoets CE, Verdijk RM, Simonsz HJ, Jansen AJ. 2014. Blinded by Shiga toxin-producing O104 Escherichia coli and hemolytic uremic syndrome. J. Pediatr. 165: 410-410.e1. https://doi.org/10.1016/j.jpeds.2014.04.008
  36. Sturm V, Menke MN, Landau K, Laube GF, Neuhaus TJ. 2010. Ocular involvement in paediatric haemolytic uraemic syndrome. Acta Ophthalmol. 88: 804-807. https://doi.org/10.1111/j.1755-3768.2009.01552.x
  37. Brigotti M, Tazzari PL, Ravanelli E, Carnicelli D, Rocchi L, Arfilli V, et al. 2011. Clinical relevance of Shiga toxin concentrations in the blood of patients with hemolytic uremic syndrome. Pediatr. Infect. Dis. J. 30: 486-490. https://doi.org/10.1097/INF.0b013e3182074d22
  38. Ramos MV, Mejias MP, Sabbione F, Fernandez-Brando RJ, Santiago AP, Amaral MM, et al. 2016. Induction of neutrophil extracellular traps in Shiga toxin-associated hemolytic uremic syndrome. J. Innate Immun. 8: 400-411. https://doi.org/10.1159/000445770
  39. Leffler J, Prohaszka Z, Mikes B, Sinkovits G, Ciacma K, Farkas P, et al. 2017. Decreased neutrophil extracellular trap degradation in Shiga toxin-associated haemolytic uraemic syndrome. J. Innate Immun. 9: 12-21. https://doi.org/10.1159/000450609
  40. Ramegowda B, Tesh VL. 1996. Differentiation-associated toxin receptor modulation, cytokine production, and sensitivity to Shiga-like toxins in human monocytes and monocytic cell lines. Infect. Immun. 64: 1173-1180.
  41. Harrison LM, van Haaften WC, Tesh VL. 2004. Regulation of proinflammatory cytokine expression by Shiga toxin 1 and/or lipopolysaccharides in the human monocytic cell line THP-1. Infect. Immun. 72: 2618-2627. https://doi.org/10.1128/IAI.72.5.2618-2627.2004
  42. Keepers TR, Psotka MA, Gross LK, Obrig TG. 2006. A murine model of HUS: Shiga toxin with lipopolysaccharide mimics the renal damage and physiologic response of human disease. J. Am. Soc. Nephrol. 17: 3404-3414. https://doi.org/10.1681/ASN.2006050419
  43. Lentz EK, Leyva-Illades D, Lee MS, Cherla RP, Tesh VL. 2011. Differential response of the human renal proximal tubular epithelial cell line HK-2 to Shiga toxin types 1 and 2. Infect. Immun. 79: 3527-3540. https://doi.org/10.1128/IAI.05139-11
  44. Mohawk KL, O'Brien AD. 2011. Mouse models of Escherichia coli O157:H7 infection and Shiga toxin injection. J. Biomed. Biotechnol. 2011: 258185.
  45. Coumbe A, Mills BP, Brown CL. 1990. Nucleolar organiser regions in endometrial hyperplasia and neoplasia. Pathol. Res. Pract. 186: 254-259. https://doi.org/10.1016/S0344-0338(11)80543-1
  46. Lentz EK, Cherla RP, Jaspers V, Weeks BR, Tesh VL. 2010. Role of tumor necrosis factor alpha in disease using a mouse model of Shiga toxin-mediated renal damage. Infect. Immun. 78: 3689-3699. https://doi.org/10.1128/IAI.00616-10
  47. Taylor FB, Jr., Tesh VL, DeBault L, Li A, Chang AC, Kosanke SD, et al. 1999. Characterization of the baboon responses to Shiga-like toxin: descriptive study of a new primate model of toxic responses to Stx-1. Am. J. Pathol. 154: 1285-1299. https://doi.org/10.1016/S0002-9440(10)65380-1
  48. Cole SL, Ho LP. 2017. Contribution of innate immune cells to pathogenesis of severe influenza virus infection. Clin. Sci. (Lond) 131: 269-283. https://doi.org/10.1042/CS20160484
  49. Greenhalgh DG. 1998. The role of apoptosis in wound healing. Int. J. Biochem. Cell Biol. 30: 1019-1030. https://doi.org/10.1016/S1357-2725(98)00058-2
  50. Lee MS, Kim MH, Tesh VL. 2013. Shiga toxins expressed by human pathogenic bacteria induce immune responses in host cells. J. Microbiol. 51: 724-730. https://doi.org/10.1007/s12275-013-3429-6
  51. Wadolkowski EA, Burris JA, O'Brien AD. 1990. Mouse model for colonization and disease caused by enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 58: 2438-2445.
  52. Lindgren SW, Melton AR, O'Brien AD. 1993. Virulence of enterohemorrhagic Escherichia coli O91:H21 clinical isolates in an orally infected mouse model. Infect. Immun. 61: 3832-3842.
  53. Shimizu K, Asahara T, Nomoto K, Tanaka R, Hamabata T, Ozawa A, et al. 2003. Development of a lethal Shiga toxin-producing Escherichia coli-infection mouse model using multiple mitomycin C treatment. Microb. Pathog. 35: 1-9. https://doi.org/10.1016/S0882-4010(03)00065-2
  54. Isogai E, Isogai H, Kimura K, Hayashi S, Kubota T, Fujii N, et al. 1998. Role of tumor necrosis factor alpha in gnotobiotic mice infected with an Escherichia coli O157:H7 strain. Infect. Immun. 66: 197-202. https://doi.org/10.1128/IAI.66.1.197-202.1998
  55. Eaton KA, Friedman DI, Francis GJ, Tyler JS, Young VB, Haeger J, et al. 2008. Pathogenesis of renal disease due to enterohemorrhagic Escherichia coli in germ-free mice. Infect. Immun. 76: 3054-3063. https://doi.org/10.1128/IAI.01626-07
  56. Karpman D, Connell H, Svensson M, Scheutz F, Alm P, Svanborg C. 1997. The role of lipopolysaccharide and Shiga-like toxin in a mouse model of Escherichia coli O157:H7 infection. J. Infect. Dis. 175: 611-620. https://doi.org/10.1093/infdis/175.3.611
  57. Mohawk KL, Melton-Celsa AR, Zangari T, Carroll EE, O'Brien AD. 2010. Pathogenesis of Escherichia coli O157:H7 strain 86-24 following oral infection of BALB/c mice with an intact commensal flora. Microb. Pathog. 48: 131-142. https://doi.org/10.1016/j.micpath.2010.01.003
  58. Tesh VL, Burris JA, Owens JW, Gordon VM, Wadolkowski EA, O'Brien AD, et al. 1993. Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect. Immun. 61: 3392-3402.
  59. Bale JF, Jr., Brasher C, Siegler RL. 1980. CNS manifestations of the hemolytic-uremic syndrome. Relationship to metabolic alterations and prognosis. Am. J. Dis. Child. 134: 869-872. https://doi.org/10.1001/archpedi.1980.02130210053014
  60. Talarico V, Aloe M, Monzani A, Miniero R, Bona G. 2016. Hemolytic uremic syndrome in children. Minerva Pediatr. 68: 441-455.
  61. Eriksson KJ, Boyd SG, Tasker RC. 2001. Acute neurology and neurophysiology of haemolytic-uraemic syndrome. Arch. Dis. Child. 84: 434-435. https://doi.org/10.1136/adc.84.5.434
  62. Siegler RL. 1995. The hemolytic uremic syndrome. Pediatr. Clin. North Am. 42: 1505-1529. https://doi.org/10.1016/S0031-3955(16)40096-9
  63. Cimolai N, Morrison BJ, Carter JE. 1992. Risk factors for the central nervous system manifestations of gastroenteritis-associated hemolytic-uremic syndrome. Pediatrics 90: 616-621.
  64. Siegler RL, Pavia AT, Christofferson RD, Milligan MK. 1994. A 20-year population-based study of postdiarrheal hemolytic uremic syndrome in Utah. Pediatrics 94: 35-40.
  65. Sheth KJ, Swick HM, Haworth N. 1986. Neurological involvement in hemolytic-uremic syndrome. Ann. Neurol. 19: 90-93. https://doi.org/10.1002/ana.410190120
  66. Bezkorovainy A, Solberg L. 1989. Ferrous iron uptake by Bifidobacterium breve. Biol. Trace Elem. Res. 20: 251-267. https://doi.org/10.1007/BF02917440
  67. Park JY, Jeong YJ, Park SK, Yoon SJ, Choi S, Jeong DG, et al. 2017. Shiga toxins induce apoptosis and ER stress in human retinal pigment epithelial cells. Toxins (Basel) 9.
  68. Fujii J, Kita T, Yoshida S, Takeda T, Kobayashi H, Tanaka N, et al. 1994. Direct evidence of neuron impairment by oral infection with verotoxin-producing Escherichia coli O157:H- in mitomycin-treated mice. Infect. Immun. 62: 3447-3453.
  69. Pinto A, Cangelosi A, Geoghegan PA, Goldstein J. 2017. Dexamethasone prevents motor deficits and neurovascular damage produced by Shiga toxin 2 and lipopolysaccharide in the mouse striatum. Neuroscience 344: 25-38. https://doi.org/10.1016/j.neuroscience.2016.12.036
  70. Sugatani J, Igarashi T, Munakata M, Komiyama Y, Takahashi H, Komiyama N, et al. 2000. Activation of coagulation in C57BL/6 mice given verotoxin 2 (VT2) and the effect of co-administration of LPS with VT2. Thromb. Res. 100: 61-72. https://doi.org/10.1016/S0049-3848(00)00305-4
  71. Obata F, Tohyama K, Bonev AD, Kolling GL, Keepers TR, Gross LK, et al. 2008. Shiga toxin 2 affects the central nervous system through receptor globotriaosylceramide localized to neurons. J. Infect. Dis. 198: 1398-1406. https://doi.org/10.1086/591911
  72. Zotta E, Lago N, Ochoa F, Repetto HA, Ibarra C. 2008. Development of an experimental hemolytic uremic syndrome in rats. Pediatr. Nephrol. 23: 559-567. https://doi.org/10.1007/s00467-007-0727-4
  73. Boccoli J, Loidl CF, Lopez-Costa JJ, Creydt VP, Ibarra C, Goldstein J. 2008. Intracerebroventricular administration of Shiga toxin type 2 altered the expression levels of neuronal nitric oxide synthase and glial fibrillary acidic protein in rat brains. Brain Res. 1230: 320-333. https://doi.org/10.1016/j.brainres.2008.07.052
  74. Goldstein J, Loidl CF, Creydt VP, Boccoli J, Ibarra C. 2007. Intracerebroventricular administration of Shiga toxin type 2 induces striatal neuronal death and glial alterations: an ultrastructural study. Brain Res. 1161: 106-115. https://doi.org/10.1016/j.brainres.2007.05.067
  75. Rentmeester TW, Hulsman JA. 1992. Loreclezole monotherapy in patients with partial seizures. Epilepsy Res. 11: 141-145. https://doi.org/10.1016/0920-1211(92)90048-X
  76. Lucero MS, Mirarchi F, Goldstein J, Silberstein C. 2012. Intraperitoneal administration of Shiga toxin 2 induced neuronal alterations and reduced the expression levels of aquaporin 1 and aquaporin 4 in rat brain. Microb. Pathog. 53: 87-94. https://doi.org/10.1016/j.micpath.2012.05.005
  77. Amran MY, Fujii J, Suzuki SO, Kolling GL, Villanueva SY, Kainuma M, et al. 2013. Investigation of encephalopathy caused by Shiga toxin 2c-producing Escherichia coli infection in mice. PLoS One 8: e58959. https://doi.org/10.1371/journal.pone.0058959
  78. Storniolo A, Raciti M, Cucina A, Bizzarri M, Di Renzo L. 2015. Quercetin affects Hsp70/IRE1alpha mediated protection from death induced by endoplasmic reticulum stress. Oxid. Med. Cell. Longev. 2015: 645157.
  79. Sugimoto N, Toma T, Shimizu M, Kuroda M, Wada T, Yachie A. 2014. Shiga toxin-2 enhances heat-shock-induced apoptotic cell death in cultured and primary glial cells. Cell Biol. Toxicol. 30: 289-299. https://doi.org/10.1007/s10565-014-9286-1
  80. Kang G, Pulimood AB, Koshi R, Hull A, Acheson D, Rajan P, et al. 2001. A monkey model for enterohemorrhagic Escherichia coli infection. J. Infect. Dis. 184: 206-210. https://doi.org/10.1086/322011
  81. Siegler RL, Pysher TJ, Tesh VL, Taylor FB, Jr. 2001. Response to single and divided doses of Shiga toxin-1 in a primate model of hemolytic uremic syndrome. J. Am. Soc. Nephrol. 12: 1458-1467.
  82. Siegler RL, Obrig TG, Pysher TJ, Tesh VL, Denkers ND, Taylor FB. 2003. Response to Shiga toxin 1 and 2 in a baboon model of hemolytic uremic syndrome. Pediatr. Nephrol. 18: 92-96.
  83. Stearns-Kurosawa DJ, Oh SY, Cherla RP, Lee MS, Tesh VL, Papin J, et al. 2013. Distinct renal pathology and a chemotactic phenotype after enterohemorrhagic Escherichia coli Shiga toxins in non-human primate models of hemolytic uremic syndrome. Am. J. Pathol. 182: 1227-1238. https://doi.org/10.1016/j.ajpath.2012.12.026
  84. Stearns-Kurosawa DJ, Collins V, Freeman S, Tesh VL, Kurosawa S. 2010. Distinct physiologic and inflammatory responses elicited in baboons after challenge with Shiga toxin type 1 or 2 from enterohemorrhagic Escherichia coli. Infect. Immun. 78: 2497-2504. https://doi.org/10.1128/IAI.01435-09
  85. Dean-Nystrom EA, Stoffregen WC, Bosworth BT, Moon HW, Pohlenz JF. 2008. Early attachment sites for Shiga-toxigenic Escherichia coli O157:H7 in experimentally inoculated weaned calves. Appl. Environ. Microbiol. 74: 6378-6384. https://doi.org/10.1128/AEM.00636-08
  86. Hamm K, Barth SA, Stalb S, Geue L, Liebler-Tenorio E, Teifke JP, et al. 2016. Experimental infection of calves with Escherichia coli O104:H4 outbreak strain. Sci. Rep. 6: 32812. https://doi.org/10.1038/srep32812
  87. Oanh TK, Nguyen VK, De Greve H, Goddeeris BM. 2012. Protection of piglets against Edema disease by maternal immunization with Stx2e toxoid. Infect. Immun. 80: 469-473. https://doi.org/10.1128/IAI.05539-11
  88. Sato T, Hamabata T, Takita E, Matsui T, Sawada K, Imaoka T, et al. 2017. Improved porcine model for Shiga toxin-producing Escherichia coli infection by deprivation of colostrum feeding in newborn piglets. Anim. Sci. J. 88: 826-831. https://doi.org/10.1111/asj.12769
  89. Moxley RA, Francis DH, Tamura M, Marx DB, Santiago-Mateo K, Zhao M. 2017. Efficacy of urtoxazumab (TMA-15 humanized monoclonal antibody specific for Shiga toxin 2) against post-diarrheal neurological sequelae caused by Escherichia coli O157:H7 infection in the neonatal gnotobiotic piglet model. Toxins (Basel) 9.
  90. Tzipori S, Wachsmuth IK, Chapman C, Birden R, Brittingham J, Jackson C, et al. 1986. The pathogenesis of hemorrhagic colitis caused by Escherichia coli O157:H7 in gnotobiotic piglets. J. Infect. Dis. 154: 712-716. https://doi.org/10.1093/infdis/154.4.712
  91. Sonntag AK, Bielaszewska M, Mellmann A, Dierksen N, Schierack P, Wieler LH, et al. 2005. Shiga toxin 2e-producing Escherichia coli isolates from humans and pigs differ in their virulence profiles and interactions with intestinal epithelial cells. Appl. Environ. Microbiol. 71: 8855-8863. https://doi.org/10.1128/AEM.71.12.8855-8863.2005
  92. Sueyoshi M, Nakazawa M. 1994. Experimental infection of young chicks with attaching and effacing Escherichia coli. Infect. Immun. 62: 4066-4071.
  93. Beery JT, Doyle MP, Schoeni JL. 1985. Colonization of chicken cecae by Escherichia coli associated with hemorrhagic colitis. Appl. Environ. Microbiol. 49: 310-315.
  94. Holloway S, Senior D, Roth L, Tisher CC. 1993. Hemolytic uremic syndrome in dogs. J. Vet. Intern. Med. 7: 220-227. https://doi.org/10.1111/j.1939-1676.1993.tb01011.x
  95. Raife T, Friedman KD, Fenwick B. 2004. Lepirudin prevents lethal effects of Shiga toxin in a canine model. Thromb. Haemost. 92: 387-393. https://doi.org/10.1160/TH03-12-0759
  96. Garcia A, Bosques CJ, Wishnok JS, Feng Y, Karalius BJ, Butterton JR, et al. 2006. Renal injury is a consistent finding in Dutch Belted rabbits experimentally infected with enterohemorrhagic Escherichia coli. J. Infect. Dis. 193: 1125-1134. https://doi.org/10.1086/501364
  97. Garcia A, Marini RP, Catalfamo JL, Knox KA, Schauer DB, Rogers AB, et al. 2008. Intravenous Shiga toxin 2 promotes enteritis and renal injury characterized by polymorphonuclear leukocyte infiltration and thrombosis in Dutch Belted rabbits. Microb. Infect. 10: 650-656. https://doi.org/10.1016/j.micinf.2008.03.004
  98. Fujii J, Kinoshita Y, Kita T, Higure A, Takeda T, Tanaka N, et al. 1996. Magnetic resonance imaging and histopathological study of brain lesions in rabbits given intravenous verotoxin 2. Infect. Immun. 64: 5053-5060.
  99. Takahashi K, Funata N, Ikuta F, Sato S. 2008. Neuronal apoptosis and inflammatory responses in the central nervous system of a rabbit treated with Shiga toxin-2. J. Neuroinflammation 5: 11. https://doi.org/10.1186/1742-2094-5-11
  100. Exeni RA, Fernandez GC, Palermo MS. 2007. Role of polymorphonuclear leukocytes in the pathophysiology of typical hemolytic uremic syndrome. ScientificWorldJournal 7: 1155-1164. https://doi.org/10.1100/tsw.2007.172
  101. Karve SS, Pradhan S, Ward DV, Weiss AA. 2017. Intestinal organoids model human responses to infection by commensal and Shiga toxin-producing Escherichia coli. PLoS One 12: e0178966. https://doi.org/10.1371/journal.pone.0178966
  102. DesRochers TM, Kimmerling EP, Jandhyala DM, El-Jouni W, Zhou J, Thorpe CM, et al. 2015. Effects of Shiga toxin type 2 on a bioengineered three-dimensional model of human renal tissue. Infect. Immun. 83: 28-38. https://doi.org/10.1128/IAI.02143-14
  103. Marquez LB, Araoz A, Repetto HA, Ibarra FR, Silberstein C. 2016. Effects of Shiga toxin 2 on cellular regeneration mechanisms in primary and three-dimensional cultures of human renal tubular epithelial cells. Microb. Pathog. 99: 87-94. https://doi.org/10.1016/j.micpath.2016.08.010
  104. Siegler R, Oakes R. 2005. Hemolytic uremic syndrome; pathogenesis, treatment, and outcome. Curr. Opin. Pediatr. 17: 200-204. https://doi.org/10.1097/01.mop.0000152997.66070.e9
  105. Sutherland SM, Kwiatkowski DM. 2017. Acute kidney injury in children. Adv. Chronic Kidney Dis. 24: 380-387. https://doi.org/10.1053/j.ackd.2017.09.007
  106. Sheoran AS, Chapman S, Singh P, Donohue-Rolfe A, Tzipori S. 2003. Stx2-specific human monoclonal antibodies protect mice against lethal infection with Escherichia coli expressing Stx2 variants. Infect. Immun. 71: 3125-3130. https://doi.org/10.1128/IAI.71.6.3125-3130.2003
  107. Lopez EL, Contrini MM, Glatstein E, Gonzalez Ayala S, Santoro R, Allende D, et al. 2010. Safety and pharmacokinetics of urtoxazumab, a humanized monoclonal antibody, against Shiga-like toxin 2 in healthy adults and in pediatric patients infected with Shiga-like toxin-producing Escherichia coli. Antimicrob. Agents Chemother. 54: 239-243. https://doi.org/10.1128/AAC.00343-09
  108. Dowling TC, Chavaillaz PA, Young DG, Melton-Celsa A, O'Brien A, Thuning-Roberson C, et al. 2005. Phase 1 safety and pharmacokinetic study of chimeric murine-human monoclonal antibody c alpha Stx2 administered intravenously to healthy adult volunteers. Antimicrob. Agents Chemother. 49: 1808-1812. https://doi.org/10.1128/AAC.49.5.1808-1812.2005
  109. Kato M, Watanabe-Takahashi M, Shimizu E, Nishikawa K. 2015. Identification of a wide range of motifs inhibitory to Shiga toxin by affinity-driven screening of customized divalent peptides synthesized on a membrane. Appl. Environ. Microbiol. 81: 1092-1100. https://doi.org/10.1128/AEM.03517-14
  110. Mitsui T, Watanabe-Takahashi M, Shimizu E, Zhang B, Funamoto S, Yamasaki S, et al. 2016. Affinity-based screening of tetravalent peptides identifies subtype-selective neutralizers of Shiga toxin 2d, a highly virulent subtype, by targeting a unique amino acid involved in its receptor recognition. Infect. Immun. 84: 2653-2661. https://doi.org/10.1128/IAI.00149-16
  111. Li T, Tu W, Liu Y, Zhou P, Cai K, Li Z, et al. 2016. A potential therapeutic peptide-based neutralizer that potently inhibits Shiga toxin 2 in vitro and in vivo. Sci. Rep. 6: 21837. https://doi.org/10.1038/srep21837
  112. Secher T, Shima A, Hinsinger K, Cintrat JC, Johannes L, Barbier J, et al. 2015. Retrograde trafficking inhibitor of Shiga toxins reduces morbidity and mortality of mice infected with enterohemorrhagic Escherichia coli. Antimicrob. Agents Chemother. 59: 5010-5013. https://doi.org/10.1128/AAC.00455-15
  113. Spooner RA, Watson P, Smith DC, Boal F, Amessou M, Johannes L, et al. 2008. The secretion inhibitor Exo2 perturbs trafficking of Shiga toxin between endosomes and the trans-Golgi network. Biochem. J. 414: 471-484. https://doi.org/10.1042/BJ20080149
  114. Mukhopadhyay S, Redler B, Linstedt AD. 2013. Shiga toxin-binding site for host cell receptor GPP130 reveals unexpected divergence in toxin-trafficking mechanisms. Mol. Biol. Cell. 24: 2311-2318. https://doi.org/10.1091/mbc.e13-01-0057
  115. Jandhyala DM, Rogers TJ, Kane A, Paton AW, Paton JC, Thorpe CM. 2010. Shiga toxin 2 and flagellin from Shiga-toxigenic Escherichia coli superinduce interleukin-8 through synergistic effects on host stress-activated protein kinase activation. Infect. Immun. 78: 2984-2994. https://doi.org/10.1128/IAI.00383-10
  116. Saenz JB, Li J, Haslam DB. 2010. The MAP kinase-activated protein kinase 2 (MK2) contributes to the Shiga toxin-induced inflammatory response. Cell. Microbiol. 12: 516-529. https://doi.org/10.1111/j.1462-5822.2009.01414.x
  117. Jandhyala DM, Ahluwalia A, Schimmel JJ, Rogers AB, Leong JM, Thorpe CM. 2015. Activation of the classical mitogen-activated protein kinases is part of the Shiga toxin-induced ribotoxic stress response and may contribute to Shiga toxin-induced inflammation. Infect. Immun. 84: 138-148.
  118. Jandhyala DM, Wong J, Mantis NJ, Magun BE, Leong JM, Thorpe CM. 2016. A novel Zak knockout mouse with a defective ribotoxic stress response. Toxins (Basel) 8.
  119. Stone SM, Thorpe CM, Ahluwalia A, Rogers AB, Obata F, Vozenilek A, et al. 2012. Shiga toxin 2-induced intestinal pathology in infant rabbits is A-subunit dependent and responsive to the tyrosine kinase and potential ZAK inhibitor imatinib. Front. Cell. Infect. Microbiol. 2: 135.
  120. Pradhan S, Pellino C, MacMaster K, Coyle D, Weiss AA. 2016. Shiga toxin mediated neurologic changes in murine model of disease. Front. Cell. Infect. Microbiol. 6: 114.
  121. Pohl JM, Volke JK, Thiebes S, Brenzel A, Fuchs K, Beziere N, et al. 2018. CCR2-dependent Gr1high monocytes promote kidney injury in Shiga toxin-induced hemolytic uremic syndrome in mice. Eur. J. Immunol.
  122. Hattori T, Watanabe-Takahashi M, Ohoka N, Hamabata T, Furukawa K, Nishikawa K, et al. 2015. Proteasome inhibitors prevent cell death and prolong survival of mice challenged by Shiga toxin. FEBS Open Bio 5: 605-614. https://doi.org/10.1016/j.fob.2015.06.005
  123. Locatelli M, Buelli S, Pezzotta A, Corna D, Perico L, Tomasoni S, et al. 2014. Shiga toxin promotes podocyte injury in experimental hemolytic uremic syndrome via activation of the alternative pathway of complement. J. Am. Soc. Nephrol. 25: 1786-1798. https://doi.org/10.1681/ASN.2013050450
  124. Goldstein J, Carden TR, Perez MJ, Taira CA, Hocht C, Gironacci MM. 2016. Angiotensin-(1-7) protects from brain damage induced by Shiga toxin 2-producing enterohemorrhagic Escherichia coli. Am. J. Physiol. Regul. Integr. Comp. Physiol. 311: R1173-R1185. https://doi.org/10.1152/ajpregu.00467.2015
  125. Sandhu KS, Gyles CL. 2002. Pathogenic Shiga toxin-producing Escherichia coli in the intestine of calves. Can. J. Vet. Res. 66: 65-72.
  126. Best A, La Ragione RM, Sayers AR, Woodward MJ. 2005. Role for flagella but not intimin in the persistent infection of the gastrointestinal tissues of specific-pathogen-free chicks by Shiga toxin-negative Escherichia coli O157:H7. Infect. Immun. 73: 1836-1846. https://doi.org/10.1128/IAI.73.3.1836-1846.2005
  127. Bast DJ, Brunton JL, Karmali MA, Richardson SE. 1997. Toxicity and immunogenicity of a verotoxin 1 mutant with reduced globotriaosylceramide receptor binding in rabbits. Infect. Immun. 65: 2019-2028.

Cited by

  1. Roles of Shiga Toxins in Immunopathology vol.11, pp.4, 2019, https://doi.org/10.3390/toxins11040212
  2. Transcriptional and Translational Inhibitors Block SOS Response and Shiga Toxin Expression in Enterohemorrhagic Escherichia coli vol.9, pp.1, 2018, https://doi.org/10.1038/s41598-019-55332-2
  3. A portable and high-sensitivity optical sensing system for detecting fluorescently labeled enterohaemorrhagic Escherichia coli Shiga toxin 2B-subunit vol.15, pp.7, 2020, https://doi.org/10.1371/journal.pone.0236043
  4. Shiga Toxins: An Update on Host Factors and Biomedical Applications vol.13, pp.3, 2021, https://doi.org/10.3390/toxins13030222
  5. Cell Biological Responses after Shiga Toxin-1 Exposure to Primary Human Glomerular Microvascular Endothelial Cells from Pediatric and Adult Origin vol.22, pp.11, 2021, https://doi.org/10.3390/ijms22115615
  6. Escherichia coli Shiga Toxins and Gut Microbiota Interactions vol.13, pp.6, 2018, https://doi.org/10.3390/toxins13060416