DOI QR코드

DOI QR Code

Fouling characteristics of humic substances on tight polysulfone-based ultrafiltration membrane

  • Ariono, Danu (Chemical Engineering Department, Institut Teknologi Bandung) ;
  • Aryanti, Putu T.P. (Chemical Engineering Department, Universitas Jenderal Achmad Yani) ;
  • Wardani, Anita K. (Chemical Engineering Department, Institut Teknologi Bandung) ;
  • Wenten, I.G. (Chemical Engineering Department, Institut Teknologi Bandung)
  • Received : 2017.10.09
  • Accepted : 2018.03.15
  • Published : 2018.09.25

Abstract

Fouling characteristics of humic substances on tight ultrafiltration (UF) membrane have been investigated. The tight UF membrane was prepared by blending polysulfone (PSf) in N.N-dimethylacetamide (DMAc) with 25%wt of Polyethylene glycol (PEG400) and 4%wt of acetone. Fouling characteristic of the modified PSf membrane was observed during peat water filtration in different trans-membrane pressure (TMP). It was found that the acetone modified membrane provided 13% increase in TMP during five hours of peat water filtration, where a stable flux was reached within 150 minutes. Meanwhile, the increase of TMP from 10 psig to 30 psig resulted in a fouling resistance enhancement of 60%. Furthermore, based on the fouling analysis, fouling mechanism at the first phase of filtration was attributed to intermediate blocking while the second phase was cake formation.

Keywords

References

  1. Ariono, D., Aryanti, P.T.P., Hakim, A.N., Subagjo, S. and Wenten, I.G. (2017a), "Determination of thermodynamic properties of polysulfone/PEG membrane solutions based on Flory-Huggins model", AIP Conf. Proceed., 1840(1), 090008.
  2. Ariono, D., Aryanti, P.T.P., Subagjo, S. and Wenten, I.G. (2017b), "The effect of polymer concentration on flux stability of polysulfone membrane", AIP Conf. Proceed., 1788(1), 030048.
  3. Aryanti, P., Sianipar, M., Zunita, M. and Wenten, I.G. (2017), "Modified membrane with antibacterial properties", Membr. Water Treat., 8(5), 463-481. https://doi.org/10.12989/MWT.2017.8.5.463
  4. Aryanti, P.T.P., Joscarita, S.R., Wardani, A.K., Subagjo, S., Ariono, D. and Wenten, I.G. (2016), "The influence of PEG400 and acetone on polysulfone membrane morphology and fouling behavior", J. Eng. Technol. Sci., 48(2), 135-149. https://doi.org/10.5614/j.eng.technol.sci.2016.48.2.1
  5. Aryanti, P.T.P., Khoiruddin, K. and Wenten, I.G. (2013), "Influence of additives on polysulfone-based ultrafiltration membrane performance during peat water filtration", J. Water Sustain., 3(2), 85-96.
  6. Aryanti, P.T.P., Subagjo, S., Ariono, D. and Wenten, I.G. (2014), "Fouling and rejection characteristic of humic substances in polysulfone ultrafiltration membrane", J. Membr. Sci. Res., 1, 41-45.
  7. Aryanti, P.T.P., Yustiana, R., Purnama, R.E.D. and Wenten, I.G. (2015), "Performance and characterization of PEG400 modified PVC ultrafiltration membrane", Membr. Water Treat., 6(5), 379-392. https://doi.org/10.12989/mwt.2015.6.5.379
  8. Baker, R.W. (2004), Membrane Technology and Applications, John Wiley and Sons, Ltd., West Sussex, United Kingdom.
  9. Beckett, R., Jue, Z. and Giddings, J.C. (1987), "Determination of molecular weight distributions of fulvic and humic acids using flow field-flow fractionation", Environ. Sci. Technol., 21(3), 289-295. https://doi.org/10.1021/es00157a010
  10. Bowen, W.R., Calvo, J.I. and Hernandez, A. (1995), "Steps of membrane blocking in flux decline during protein microfiltration", J. Membr. Sci., 101(1), 153-165. https://doi.org/10.1016/0376-7388(94)00295-A
  11. Chakrabarty, B., Ghoshal, A.K. and Purkait, M.K. (2008), "Effect of molecular weight of PEG on membrane morphology and transport properties", J. Membr. Sci., 309(1), 209-221. https://doi.org/10.1016/j.memsci.2007.10.027
  12. Chang, H., Liang, H., Qu, F., Ma, J., Ren, N. and Li, G. (2016), "Towards a better hydraulic cleaning strategy for ultrafiltration membrane fouling by humic acid: Effect of backwash water composition", J. Environ. Sci., 43, 177-186. https://doi.org/10.1016/j.jes.2015.09.005
  13. Chen, V., Fane, A.G., Madaeni, S. and Wenten, I.G. (1997), "Particle deposition during membrane filtration of colloids: Transition between concentration polarization and cake formation", J. Membr. Sci., 125(1), 109-122. https://doi.org/10.1016/S0376-7388(96)00187-1
  14. Cheng, Q., Zheng, Y., Yu, S., Zhu, H., Peng, X., Liu, J., Liu, J., Liu, M. and Gao, C. (2013), "Surface modification of a commercial thin-film composite polyamide reverse osmosis membrane through graft polymerization of Nisopropylacrylamide followed by acrylic acid", J. Membr. Sci., 447, 236-245. https://doi.org/10.1016/j.memsci.2013.07.025
  15. Cho, J., Amy, G. and Pellegrino, J. (2000), "Membrane filtration of natural organic matter: Factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane", J. Membr. Sci., 164(1-2), 89-110. https://doi.org/10.1016/S0376-7388(99)00176-3
  16. Chou, W.L., Yu, D.G., Yang, M.C. and Jou, C.H. (2007), "Effect of molecular weight and concentration of PEG additives on morphology and permeation performance of cellulose acetate hollow fibers", Sep. Purif. Technol. 57(2), 209-219. https://doi.org/10.1016/j.seppur.2007.04.005
  17. Chu, K.H., Shankar, V., Park, C.M., Sohn, J., Jang, A. and Yoon, Y. (2017), "Evaluation of fouling mechanisms for humic acid molecules in an activated biochar-ultrafiltration hybrid system", Chem. Eng. J., 326, 240-248. https://doi.org/10.1016/j.cej.2017.05.161
  18. Crozes, G.F., Jacangelo, J.G., Anselme, C. and Laine, J.M. (1997), "Impact of ultrafiltration operating conditions on membrane irreversible fouling", J. Membr. Sci., 124(1), 63-76. https://doi.org/10.1016/S0376-7388(96)00244-X
  19. Dal-Cin, M.M., McLellan, F., Striez, C.N., Tam, C.M., Tweddle, T.A. and Kumar, A. (1996), "Membrane performance with a pulp mill effluent: Relative contributions of fouling mechanisms", J. Membr. Sci., 120(2), 273-285. https://doi.org/10.1016/0376-7388(96)00151-2
  20. Duclos-Orsello, C., Li, W. and Ho, C.C. (2006), "A three mechanism model to describe fouling of microfiltration membranes", J. Membr. Sci., 280(1-2), 856-866. https://doi.org/10.1016/j.memsci.2006.03.005
  21. Fan, L., Harris, J.L., Roddick, F.A. and Booker, N.A. (2001), "Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes", Water Res., 35(18), 4455-4463. https://doi.org/10.1016/S0043-1354(01)00183-X
  22. Filloux, E., Gernjak, W., Gallard, H. and Croue, J.P. (2016), "Investigating the relative contribution of colloidal and soluble fractions of secondary effluent organic matter to the irreversible fouling of MF and UF hollow fibre membranes", Sep. Purif. Technol., 170, 109-115. https://doi.org/10.1016/j.seppur.2016.06.034
  23. Goldrick, S., Joseph, A., Mollet, M., Turner, R., Gruber, D., Farid, S.S. and Titchener-Hooker, N.J. (2017), "Predicting performance of constant flow depth filtration using constant pressure filtration data", J. Membr. Sci., 531, 138-147. https://doi.org/10.1016/j.memsci.2017.03.002
  24. Grenier, A., Meireles, M., Aimar, P. and Carvin, P. (2008), "Analysing flux decline in dead-end filtration", Chem. Eng. Res. Des., 86(11), 1281-1293. https://doi.org/10.1016/j.cherd.2008.06.005
  25. Guo, W., Ngo, H.H. and Li, J. (2012), "A mini-review on membrane fouling", Bioresour. Technol., 122, 27-34. https://doi.org/10.1016/j.biortech.2012.04.089
  26. Hermia, J. (1982), "Constant pressure blocking filtration law application to powder-law non-newtonian fluid", Trans. Inst. Chem. Eng., 60, 183-187.
  27. Himma, N.F., Anisah, S., Prasetya, N. and Wenten, I.G. (2016), "Advances in preparation, modification, and application of polypropylene membrane", J. Polym. Eng., 36(4), 329-362. https://doi.org/10.1515/polyeng-2015-0112
  28. Himma, N.F., Prasetya, N., Anisah, S. and Wenten, I.G. (2018), "Superhydrophobic membrane: Progress in preparation and its separation properties", Rev. Chem. Eng., https://doi.org/10.1515/revce-2017-0030.
  29. Himma, N.F., Wardani, A.K. and Wenten, I.G. (2017), "Preparation of Superhydrophobic polypropylene membrane using dip-coating method: The effects of solution and process parameters", Polym. Plast. Technol. Eng., 56(2), 184-194. https://doi.org/10.1080/03602559.2016.1185666
  30. Howell, J.A. (1995), "Sub-critical flux operation of microfiltration", J. Membr. Sci., 107(1-2), 165-171. https://doi.org/10.1016/0376-7388(95)00114-R
  31. Hwang, K.J., Liao, C.Y. and Tung, K.L. (2008), "Effect of membrane pore size on the particle fouling in membrane filtration", Desalination, 234(1), 16-23. https://doi.org/10.1016/j.desal.2007.09.065
  32. Katsoufidou, K., Yiantsios, S.G. and Karabelas, A.J. (2005), "A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling", J. Membr. Sci., 266(1-2), 40-50. https://doi.org/10.1016/j.memsci.2005.05.009
  33. Kuchler, I.L. and Miekeley, N. (1994), "Ultrafiltration of humic compounds through low molecular mass cut-off level membranes", Sci. Total Environ., 154(1), 23-28. https://doi.org/10.1016/0048-9697(94)90610-6
  34. Kumar, M., McGlade, D., Ulbricht, M. and Lawler, J. (2015), "Quaternized polysulfone and graphene oxide nanosheet derived low fouling novel positively charged hybrid ultrafiltration membranes for protein separation", RSC Adv., 5(63), 51208-51219. https://doi.org/10.1039/C5RA06893B
  35. Kwon, D.Y., Vigneswaran, S., Fane, A.G. and Aim, R.B. (2000), "Experimental determination of critical flux in cross-flow microfiltration", Sep. Purif. Technol., 19(3), 169-181. https://doi.org/10.1016/S1383-5866(99)00088-X
  36. Lee, S.J. and Kim, J.H. (2014), "Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes", Water Res., 48, 43-51. https://doi.org/10.1016/j.watres.2013.08.038
  37. Li, K., Huang, T., Qu, F., Du, X., Ding, A., Li, G. and Liang, H. (2016), "Performance of adsorption pretreatment in mitigating humic acid fouling of ultrafiltration membrane under environmentally relevant ionic conditions", Desalination, 377, 91-98. https://doi.org/10.1016/j.desal.2015.09.016
  38. Kumar, M.S., Madhu, G.M. and Roy, S. (2007), "Fouling behaviour, regeneration options and on-line control of biomassbased power plant effluents using microporous ceramic membranes", Sep. Purif. Technol., 57(1), 25-36. https://doi.org/10.1016/j.seppur.2007.03.002
  39. Mansouri, J., Charlton, T., Chen, V. and Weiss, T. (2016), "Biofouling performance of silver-based PES ultrafiltration membranes", Desalination Water Treat., 57(58), 28100-28114. https://doi.org/10.1080/19443994.2016.1183231
  40. Matsuyama, H., Maki, T., Teramoto, M. and Kobayashi, K. (2003), "Effect of PVP additive on porous polysulfone membrane formation by immersion precipitation method", Sep. Sci. Technol., 38(14), 3449-34458. https://doi.org/10.1081/SS-120023408
  41. Mohammadi, T., Kazemimoghadam, M. and Saadabadi, M. (2003), "Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil in water emulsions", Desalination, 157(1), 369-375. https://doi.org/10.1016/S0011-9164(03)00419-3
  42. Nghiem, L.D. and Hawkes, S. (2007), "Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): Mechanisms and role of membrane pore size", Sep. Purif. Technol., 57(1), 176-184. https://doi.org/10.1016/j.seppur.2007.04.002
  43. Noble, R.D. and Stern, S.A. (1995), Membrane Separations Technology: Principles and Applications, Elsevier, New York, U.S.A.
  44. Peter-Varbanets, M., Zurbrugg, C., Swartz, C. and Pronk, W. (2009), "Decentralized systems for potable water and the potential of membrane technology", Water Res., 43(2), 245-265. https://doi.org/10.1016/j.watres.2008.10.030
  45. Rana, D. and Matsuura, T. (2010), "Surface modifications for antifouling membranes", Chem. Reviews, 110(4), 2448-2471. https://doi.org/10.1021/cr800208y
  46. Razi, B., Aroujalian, A. and Fathizadeh, M. (2012), "Modeling of fouling layer deposition in cross-flow microfiltration during tomato juice clarification", Food Bioprod. Process., 90(4), 841-848. https://doi.org/10.1016/j.fbp.2012.05.004
  47. Salahi, A., Abbasi, M. and Mohammadi, T. (2010), "Permeate flux decline during UF of oily wastewater: Experimental and modeling", Desalination, 251(1), 153-160. https://doi.org/10.1016/j.desal.2009.08.006
  48. Sianipar, M., Kim, S.H., Khoiruddin, K., Iskandar, F. and Wenten, I.G. (2017), "Functionalized carbon nanotube (CNT) membrane: Progress and challenges", RSC Adv., 7(81), 51175-51198. https://doi.org/10.1039/C7RA08570B
  49. Susanto, H., Feng, Y. and Ulbricht, M. (2009), "Fouling behavior of aqueous solutions of polyphenolic compounds during ultrafiltration", J. Food Eng., 91(2), 333-340. https://doi.org/10.1016/j.jfoodeng.2008.09.011
  50. Taniguchi, M., Kilduff, J.E. and Belfort, G. (2003), "Modes of natural organic matter fouling during ultrafiltration", Environ. Sci. Technol., 37(8), 1676-1683. https://doi.org/10.1021/es020555p
  51. Teow, Y.H. (2016), "Characterization and performance evaluation of ultrafiltration membrane for humic acid removal", Indian J. Sci. Technol., 9(22).
  52. Todisco, S., Pena, L., Drioli, E. and Tallarico, P. (1996), "Analysis of the fouling mechanism in microfiltration of orange juice", J. Food Process. Preservation, 20(6), 453-466. https://doi.org/10.1111/j.1745-4549.1996.tb00759.x
  53. Tracey, E.M. and Davis, R.H. (1994), "Protein fouling of tracketched polycarbonate microfiltration membranes", J. Colloid Interface Sci., 167(1), 104-116. https://doi.org/10.1006/jcis.1994.1338
  54. Traina, S.J., Novak, J. and Smeck, N.E. (1990), "An ultraviolet absorbance method of estimating the percent aromatic carbon content of humic acids", J. Environ. Qual., 19(1), 151-153. https://doi.org/10.2134/jeq1990.00472425001900010023x
  55. Vela, M.C.V., Blanco, S.A., Garcia, J.L. and Rodriguez, E.B. (2008), "Analysis of membrane pore blocking models applied to the ultrafiltration of PEG", Sep. Purif. Technol., 62(3), 489-498. https://doi.org/10.1016/j.seppur.2008.02.028
  56. Wang, F. and Tarabara, V.V. (2008), "Pore blocking mechanisms during early stages of membrane fouling by colloids", J. Colloid Interface Sci., 328(2), 464-469. https://doi.org/10.1016/j.jcis.2008.09.028
  57. Wardani, A.K., Hakim, A.N., Khoiruddin, K. and Wenten, I.G. (2017), "Combined ultrafiltration-electrodeionization technique for production of high purity water", Water Sci. Technol., 75(12), 2891-2899. https://doi.org/10.2166/wst.2017.173
  58. Wenten, I.G. (1995), "Mechanisms and control of fouling in crossflow microfiltration", Filtr. Sep., 32(3), 252-253. https://doi.org/10.1016/S0015-1882(97)84049-9
  59. Wenten, I.G. and Khoiruddin, K. (2016), "Recent developments in heterogeneous ion-exchange membrane: Preparation, modification, characterization and performance evaluation", J. Eng. Sci. Technol., 11(7), 916-934.
  60. Wenten, I.G., Khoiruddin, K., Aryanti, P.T.P. and Hakim, A.N. (2016), "Scale-up strategies for membrane-based desalination processes: A review", J. Membr. Sci. Res., 2(2), 42-58.
  61. Wenten, I.G., Steven, S., Dwiputra, A., Khoiruddin, K. and Hakim, A.N. (2017), "From lab to full-scale ultrafiltration in microalgae harvesting", J. Physics: Conf. Series, 877(1), 012002. https://doi.org/10.1088/1742-6596/877/1/012002
  62. Yang, X., Wang, R., Fane, A.G., Tang, C.Y. and Wenten, I.G. (2013), "Membrane module design and dynamic shear-induced techniques to enhance liquid separation by hollow fiber modules: A review", Desalination Water Treat., 51(16-18), 3604-3627. https://doi.org/10.1080/19443994.2012.751146
  63. Zhang, W. and Ding, L. (2015), "Investigation of membrane fouling mechanisms using blocking models in the case of shearenhanced ultrafiltration", Sep. Purif. Technol., 141, 160-169. https://doi.org/10.1016/j.seppur.2014.11.041
  64. Zularisam, A.W., Ismail, A.F., Salim, M.R., Sakinah, M. and Ozaki, H. (2007), "The effects of natural organic matter (NOM) fractions on fouling characteristics and flux recovery of ultrafiltration membranes", Desalination, 212(1), 191-208. https://doi.org/10.1016/j.desal.2006.10.010

Cited by

  1. Modification of PVC Membrane for Humic Substance Removal in Peat Water vol.1477, pp.None, 2018, https://doi.org/10.1088/1742-6596/1477/5/052014