DOI QR코드

DOI QR Code

Efficient removal of radioactive waste from solution by two-dimensional activated carbon/Nano hydroxyapatite composites

  • El Said, Nessem (Nuclear Fuel Chemistry Hot Labs. And Waste Management Center, Atomic Energy Authority) ;
  • Kassem, Amany T. (Nuclear Fuel Chemistry Hot Labs. And Waste Management Center, Atomic Energy Authority)
  • Received : 2017.05.19
  • Accepted : 2018.03.29
  • Published : 2018.09.25

Abstract

The nano/micro composites with highly porous surface area have attracted of great interest, particularly the synthesis of porous and thin film sheets of high performance. In this paper, an easy method of cost-effective synthesis of thin film ceramic fiber membranes based on Hydroxyapatite, and activated carbon by turned into studied to be applied within the service-facilitated the transport of radioactive waste such as $^{90}Sr$, $^{137}Cs$ and $^{60}Co$) as activated product of radioisotopes from ETRR-2 research reactor and dissolved in 3M $HNO_3$, across a thin flat-sheet supported liquid membrane (TFSSLM). Radionuclides are transported from alkaline pH values. The presence of sodium salts in the aqueous media improves in $HNO_3$, the lowering of permeability because the initial $HNO_3$ concentration is improved. The study some parameters on the thin sheet ceramic supported liquid membrane. EDTA as stripping phase concentration, time of extraction and temperature were studied. The study of maximum permeability of radioisotopes for all parameters. The pertraction of a radioactive waste solution from nitrate medium were examined at the optimized conditions. Under the optimum experimental 98.6-99.9% of $^{90}Sr$, 79.65-80.3% of $^{137}Cs$ and $^{60}Co$ 45.5-55.5% in 90-110 min with were extracted in 10-30 min, respectively. The process of diffusion in liquid membranes is governed by the chemical diffusion process.

Keywords

References

  1. Alguacil, F.J. and Alonso, M. (2004), "Transport of Au(CN)2-across a supported liquid membrane using mixtures of amine Primene JMT and phosphine oxide Cyanex 923", J. Hydrometallurgy, 74(1-2), 157-163. https://doi.org/10.1016/j.hydromet.2004.03.001
  2. Bukhar, N., Chaudry, M.A. and Mazhar, M. (2004), "Cobalt(II) transport through triethanolamine-cyclohexanone supported liquid membrane", J. Membr. Sci., 234(1-2), 157-165. https://doi.org/10.1016/j.memsci.2003.12.027
  3. Castillo, E., Granados, M. and Cortina, J.L. (2002), "Liquidsupported membranes in chromium (VI) optical sensing: Transport modelling", Analytica Chimica Acta, 464(2), 197-208. https://doi.org/10.1016/S0003-2670(02)00473-7
  4. Christensen, J.J., Lamb, J.D., Izatt, S.R., Starr, S.E., Weed, G.C., Astin, M.S., Slitt, B.D and Izatt, R.M. (1978), "Effect of anion type on rate of facilitated transport of cations across liquid membranes via neutral macrocyclic carriers", J. Am. Chem. Soc., 100(10), 3219-3220. https://doi.org/10.1021/ja00478a047
  5. Danesi, P.R. Reichley-Vinger, L. and Rickert, P.G. (1987), "Lifetime of supported liquid membranes: The influence of interfacial properties, chemical composition and water transport on the long-term stabilities of the membranes", J. Membr. Sci. 31(2-3), 117-145. https://doi.org/10.1016/S0376-7388(00)82223-1
  6. Danesi, P.R., Horwitz, E.P., Vandegrift, G.F. and Chiarizia, R. (1981), "Mass transfer rate through liquid membranes: Interfacial chemical reactions and diffusion as simultaneous permeability controlling factors", Sep. Sci. Technol., 16(2), 201-211. https://doi.org/10.1080/01496398108058114
  7. Dong, G., Hou, J., Wang, J., Zhang, Y., Chen, V. and Liu, J. (2016), "Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes", J. Membr. Sci., 520, 860-868. https://doi.org/10.1016/j.memsci.2016.08.059
  8. Efome, J.E., Baghbanzadeh, M., Rana, D., Matsuura, T. and Lan, C.Q. (2015), "Effects of super hydrophobic SiO2 nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation", Desalination, 373, 47-57. https://doi.org/10.1016/j.desal.2015.07.002
  9. El-said, N., Ali, M.M.S. and Hamd, M.M. (2014), "Nanoapatite for Nanotechnology: Part (III) A novel process for the fabrication and Improvement of nanoporous apatites from synthetic hydroxyapatite (HAp) in vitro activated carbon", 7(1), 2278-5736.
  10. Geist, A., Plucinski, P. and Nitsch, W. (2000), "Mass transfer kinetics of reactive multi-cation coextraction to bis (2-ethylhexyl) phosphoric acid", Solvent Extr. Ion Exch., 18(3), 493-515. https://doi.org/10.1080/07366290008934694
  11. Ghadiri, M., Marjani, A. and Shirazian, S. (2017), "Development of a mechanistic model for prediction of $CO_2$ capture from gas mixtures by amine solutions in porous membranes", J. Environ. Sci. Pollut. Res., 24(16), 236. https://doi.org/10.1007/s11356-016-7692-z
  12. Gopi, D., Ramya, S., Rajeswari, D., Surendiran, M. and Kavitha, L. (2014), "Development of strontium and magnesium substituted porous hydroxyapatite/poly (3, 4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells", Colloids Surf. B: Biointerfaces, 114, 234-240. https://doi.org/10.1016/j.colsurfb.2013.10.011
  13. Harruddin, N., Saufi, S.M., Faizal, C.K.M., Mohammad, A.W., and Ming, H.N. (2017), "Supported liquid membrane using hybrid polyether sulfone/graphene flat sheet membrane for acetic acid removal", J. Phys. Sci., 28, 111.
  14. He, D.S., Ma, M. and Zham, Z. (2000), "Transport of cadmium ions through a liquid membrane containing amine extractants as carriers", J. Membr. Sci., 169(1), 53-59. https://doi.org/10.1016/S0376-7388(99)00328-2
  15. Izatt, R.M., Roper, D.K., Bruening, R.L and Lamb, J.D. (1989), "Macrocycle-mediated cation transport using hollow fiber supported liquid membranes", J. Membr. Sci., 45(1-2), 73-84. https://doi.org/10.1016/S0376-7388(00)80846-7
  16. Juang, R.S., Kao, H.C. and Wu, W.H. (2004), "Analysis of liquid membrane extraction of binary Zn(II) and Cd(II) from chloride media with Aliquat 336 based on thermodynamic equilibrium models", J. Membr. Sci., 228(2), 169-177. https://doi.org/10.1016/j.memsci.2003.10.005
  17. Kasai, A., Willershausen, B., Reichert, C., Rohrig, B., Smeets, R. and Schmidt, M. (2008), "Ability of nanocrystalline hydroxyapatite paste to promote human ligament cell proliferation", J. Oral Sci., 50(3), 279-285. https://doi.org/10.2334/josnusd.50.279
  18. Kislik, V.S. and Eyal, A.M. (1996), "Hybrid liquid membrane (HLM) system in separation technologies", J. Membr. Sci., 111(2), 259-272. https://doi.org/10.1016/0376-7388(95)00258-8
  19. Kolev, S.D., Argiropoulos, G., Cattrall, R.W., Hamilton, I.C. and Paimin, R. (1997), "Mathematical modelling of membrane extraction of gold (III) from hydrochloric acid solutions", J. Membr. Sci., 137(1-2), 261-269. https://doi.org/10.1016/S0376-7388(97)00209-3
  20. Kool, J.B., Parker, J.C. and Van Genuchten, M.T. (1987), "Parameter estimation for unsaturated flow and transport models - A review", J. Hydrology, 91(3-4), 255-293. https://doi.org/10.1016/0022-1694(87)90207-1
  21. Kouki, N., Tayeb, R. and Dhahbi, M. (2014), "A flat-sheet supported liquid membrane based on Aliquat(R) 336 as carrier for the removal of salicylic acid from aqueous solution", Desalination Water Treat., 52(25-27), 4745-4754. https://doi.org/10.1080/19443994.2013.814325
  22. Kumar, A. Haddad, R., Alguacil, F. J. and Sastre, A.M. (2005), "Comparative performance of non-dispersive solvent extraction using a single module and the integrated membrane process with two hollow fiber contactors", J. Membr. Sci., 248(1-2), 1-14. https://doi.org/10.1016/j.memsci.2004.09.003
  23. Lin, S.H. and Juang, R.S. (2001), "Mass-transfer in hollow-fiber modules for extraction and back-extraction of copper (II) with LIX64N carriers", J. Membr. Sci., 188(2), 251-262 https://doi.org/10.1016/S0376-7388(01)00383-0
  24. Nawaz, R., Ali, K. and Arshad, M. (2015), "Recovery of mercury using a trioctylphosphine oxide-based supported liquid membrane system", Environ. Eng. Sci., 32(11), 948-959. https://doi.org/10.1089/ees.2015.0163
  25. Noble, R.D. and Way, J.D. (1987), "Liquid membrane technology: An overview", Liquid Membranes: Theory and Applications, American Chemical Society, Washington, DC, U.S.A.
  26. Park, M., Phuntsho, S., He, T., Nisola, G., Tijing, L., Li, X., Chen, G,. Chung, W. and Shon, H. (2015), "Graphene oxide incorporated polysulfide substrate for the fabrication of flatsheet thin-film composite forward osmosis membranes", J. Membr. Sci., 493, 496-507. https://doi.org/10.1016/j.memsci.2015.06.053
  27. Safarpour, M., Khataee, A. and Vatanpour, V. (2015), "Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes", J. Sep. Purif. Technol., 140, 32-42. https://doi.org/10.1016/j.seppur.2014.11.010
  28. Sobieski, W. and Lipinski, S. (2017), "The analysis of the relations between porosity and tortuosity in granular beds", J. Technical Sci., 85.
  29. Uheida, A., Zhang, Y. and Muhammed, M. (2004), "Transport of palladium (II) through hollow fiber supported liquid membrane facilitated by nonylthiourea", J. Membr. Sci., 241(2), 289-295. https://doi.org/10.1016/j.memsci.2004.05.020
  30. Vakifahmetoglu, C. (2011), "Fabrication and properties of ceramic 1D nanostructures from preceramic polymers: A review", Adv. Appl. Ceramics: Struct., Funct. Bioceramics., 110(4),188-204. https://doi.org/10.1179/1743676111Y.0000000007
  31. Van de Voorde, I., Pinoy, L. and de Ketelaere, R.F. (2004), "Recovery of nickel ions by supported liquid membrana (SLM) extraction", J. Membr. Sci., 234(1-2), 11-21. https://doi.org/10.1016/j.memsci.2004.01.002
  32. Wang, L., Paimin, R., Cattrall, R.W., Shen, W. and Kolev, S.D. (2000), "The extraction of cadmium (II) and copper (II) from hydrochloric acid solutions using an Aliquat 336/PVC membrane", J. Membr. Sci., 176(1), 105-111. https://doi.org/10.1016/S0376-7388(00)00436-1
  33. Wodzki, R. and Sionkowski, G. (1995), "Recovery and concentration of metal ions. II Multimembrane hybrid system", Sep. Sci. Technol., 30(13), 2763-2778. https://doi.org/10.1080/01496399508013714
  34. Woo, Y.C., Tijing, L., Shim, W.G., Choi, J.S., Kim, S.H., Drioli, E. and Shon, H.K. (2016), "Water desalination using graphene-enhanced electrospun nano fiber membrane via air gap membrane distillation", J. Membr. Sci., 520, 99-110. https://doi.org/10.1016/j.memsci.2016.07.049
  35. Wu, X., Zhao, B., Wang, L., Zhang, Z., Zhang, H., Zhao, X. and Guo, X. (2016), "Hydrophobic PVDF/graphene hybrid membrane for CO2 absorption in membrane contactor", J. Membr. Sci., 520, 120-129. https://doi.org/10.1016/j.memsci.2016.07.025
  36. Yang, C.F. and Cussler, E.L. (2000), "Reactive dependent extraction of copper and nickel using hollow fibers", J. Membr. Sci., 166(2), 229-238. https://doi.org/10.1016/S0376-7388(99)00265-3

Cited by

  1. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2018, https://doi.org/10.12989/scs.2020.37.6.695