DOI QR코드

DOI QR Code

In-situ modification of PVC UF membrane by SiO2 sol in the coagulation bath during NIPS process

  • Cheng, Liang (State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology (ECUST)) ;
  • Xu, Zhen-Liang (State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology (ECUST)) ;
  • Yang, Hu (State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology (ECUST)) ;
  • Wei, Yong-Min (State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, East China University of Science and Technology (ECUST))
  • Received : 2017.03.24
  • Accepted : 2018.04.09
  • Published : 2018.09.25

Abstract

Polyvinyl chloride (PVC) ultrafiltration (UF) membrane was modified by silica sol in the coagulation bath during non-solvent induced phase separation (NIPS) process. The effects of silica sol concentrations on the morphology, surface property, mechanical strength and separation property of PVC UF membranes were systematically investigated. PVC membranes were characterized by Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), contact angle goniometry and tensile strength measurement. The results showed that silica had been successfully assembled on the surface of PVC UF membrane. With the increase of silica sol concentration in the coagulation bath, the morphologies of PVC UF membranes changed from cavity structure to finger-like pore structure and asymmetric cross-section structure. The hydrophilicity and permeability of PVC UF membranes were further evaluated. When silica sol concentration was 20 wt.%, the modified PVC membrane exhibited the highest hydrophilicity with a static contact angle of $36.5^{\circ}$ and permeability of $91.8(L{\cdot}m^{-2}{\cdot}h^{-1})$. The structure of self-assemble silica had significant impact on the surface property, morphology, mechanical strength and resultant separation performance of the PVC membranes.

Keywords

References

  1. An, Q.F., Qian, J.W., Sun, H.B., Wang, L.N., Zhang, L. and Chen, H.L. (2003), "Compatibility of PVC/EVA blends and the pervaporation of their blend membranes for benzene/cyclohexane mixtures", J. Membr. Sci., 222(1-2), 113-122. https://doi.org/10.1016/S0376-7388(03)00260-6
  2. Behboudi, A., Jafarzadeh, Y. and Yegani, R. (2016), "Preparation and characterization of $TiO_2$ embedded PVC ultrafiltration membranes", Chem. Eng. Res. Des., 114, 96-107. https://doi.org/10.1016/j.cherd.2016.07.027
  3. Bierbrauer, K., Lopez-Gonzalez, M., Riande, E. and Mijangos, C. (2010), "Gas transport in fluorothiophenyl modified PVC membranes", J. Membr. Sci., 362(1-2), 164-171. https://doi.org/10.1016/j.memsci.2010.06.035
  4. Bilad, M.R., Marbelia, L., Laine, C. and Vankelecom, I.F. (2015), "A PVC-silica mixed-matrix membrane (MMM) as novel type of membrane bioreactor (MBR) membrane", J. Membr. Sci., 493(1), 19-27. https://doi.org/10.1016/j.memsci.2015.05.074
  5. Chen, G.E., Liu, Y.J., Xu, Z.L., Tang, Y.J., Huang, H.H. and Sun, L. (2015), "Fabrication and characterization of a novel nanofiltration membrane by the interfacial polymerization of 1,4-diaminocyclohexane (DCH) and trimesoyl chloride (TMC)", RSC Adv., 5(51), 40742-40752. https://doi.org/10.1039/C5RA02560E
  6. Chen, G.E., Zhu, W.W., Xu, S.J., Xu, Z.L., Shen, Q., Sun, W.G., Wu, Q. and Zheng, X.P. (2016), "A PVDF/PVB composite UF membrane improved by F-127-wrapped fullerene for protein waste-water separation", RSC Adv., 6(87), 83510-83519. https://doi.org/10.1039/C6RA15441G
  7. Chi, L.N., Wang, J., Chu, T.S., Qian, Y.J., Yu, Z.J., Wu, D.Y., Zhang, Z.J., Jiang, Z. and Leckie, J.O. (2016), "Modeling and optimizing the performance of PVC/PVB ultrafiltration membranes using supervised learning approaches", RSC Adv., 6(33), 28038-28046. https://doi.org/10.1039/C5RA24654G
  8. Cui, Y., Yao, Z.K., Zheng, K., Du, S.Y., Zhu, B.K., Zhu, L.P. and Du, C.H. (2015), "Positively-charged nanofiltration membrane formed by quaternization and cross-linking of blend PVC/P(DMA-co-MMA) precursors", J. Membr. Sci., 492, 187-196. https://doi.org/10.1016/j.memsci.2015.05.019
  9. Endo, K. (2002), "Synthesis and structure of poly(vinyl chloride)", Prog. Polym. Sci., 27(10), 2021-2054. https://doi.org/10.1016/S0079-6700(02)00066-7
  10. Fan, X.C., Su, Y.L., Zhao, X.T., Li, Y.F., Zhang, R.N., Zhao, J. J., Jiang, Z.Y., Zhu, J.A., Ma, Y.Y. and Liu, Y. (2014), "Fabrication of polyvinyl chloride ultrafiltration membranes with stable antifouling property by exploring the pore formation and surface modification capabilities of polyvinyl formal", J. Membr. Sci., 464(6), 100-109. https://doi.org/10.1016/j.memsci.2014.04.005
  11. Fang, L.F., Zhu, B.K., Zhu, L.P., Matsuyama, H. and Zhao, S.F. (2017), "Structures and antifouling properties of polyvinyl chloride/poly(methyl methacrylate)-graft-poly(ethylene glycol) blend membranes formed in different coagulation media", J. Membr. Sci., 524, 235-244. https://doi.org/10.1016/j.memsci.2016.11.026
  12. Guo, J.L., Li, Y., Xu, Z.L., Zhang, P.Y. and Yang, H. (2014), "Investigation of polyvinylidene fluoride membranes prepared by using surfactant OP-10 alone or with a second component, as additives, via the non-solvent-induced phase separation (NIPS) process", J. Macromol. Sci., Phys., 53(8), 1319-1334. https://doi.org/10.1080/00222348.2014.928163
  13. Harmer, M.A., Farneth, W. E. and Sun, Q. (1996), "High surface area nafion resin/silica nanocomposites: A new class of solid acid catalyst", J. Am. Chem. Soc., 118(33), 7708-7715. https://doi.org/10.1021/ja9541950
  14. Harmer, M.A., Sun, Q., Vega, A.J., Farneth, W.E., Heidekum, A. and Hoelderichb, W.F. (2000), "Nafion resin-silica nanocomposite solid acid catalysts. Microstructure-processingproperty correlations", Green Chem., 2(1), 7-14. https://doi.org/10.1039/a907892d
  15. Hosseini, S.M., Madaeni, S.S., Zendehnam, A., Moghadassi, A.R., Khodabakhshi, A.R. and Sanaeepur, H. (2013), "Preparation and characterization of PVC based heterogeneous ion exchange membrane coated with Ag nanoparticles by (thermal-plasma) treatment assisted surface modification", J. Ind. Eng. Chem., 19(3), 854-862. https://doi.org/10.1016/j.jiec.2012.10.031
  16. Irfan, M., Idris, A., Yusof, N.M., Khairuddin, N.F.M. and Akhmal, H. (2014), "Surface modification and performance enhancement of nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes", J. Membr. Sci., 467(19), 73-84. https://doi.org/10.1016/j.memsci.2014.05.001
  17. Karan, S., Jiang, Z.W. and Livingston, A.G. (2015), "Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation", Science, 348(6241), 1347-1351. https://doi.org/10.1126/science.aaa5058
  18. Kim, D.S., Kang, J.S., Kim, K.Y. and Lee, Y.M. (2002), "Surface modification of a poly(viny1 chloride) membrane by UV irradiation for reduction in sludge adsorption", Desalination, 146(1-3), 301-305. https://doi.org/10.1016/S0011-9164(02)00494-0
  19. Kong, X., Zhou, M.Y., Lin, C.E., Wang, J., Zhao, B., Wei, X.Z. and Zhu, B.K. (2016), "Polyamide/PVC based composite hollow fiber nanofiltration membranes: Effect of substrate on properties and performance", J. Membr. Sci., 505(2016), 231-240. https://doi.org/10.1016/j.memsci.2016.01.028
  20. Li, J.F., Xu, Z.L., Yang, H., Yu, L.Y. and Liu, M. (2009), "Effect of $TiO_2$ nanoparticles on the surface morphology and performance of microporous PES membrane", Appl. Surf. Sci., 255(9), 4725-4732. https://doi.org/10.1016/j.apsusc.2008.07.139
  21. Marbelia, L., Bilad, M.R., Bertels, N., Laine, C. and Vankelecom, I.F. (2016), "Ribbed PVC-silica mixed matrix membranes for membrane bioreactors", J. Membr. Sci., 498, 315-323. https://doi.org/10.1016/j.memsci.2015.10.017
  22. Mei, S., Xiao, C.F., Hu, X.Y. and Shu, W. (2011), "Hydrolysis modification of PVC/PAN/$SiO_2$ composite hollow fiber membrane", Desalination, 280(1-3), 378-383. https://doi.org/10.1016/j.desal.2011.07.026
  23. Meng, N., Wang, Z.Y., Low, Z.X., Zhang, Y.Q., Wang, H.T. and Zhang, X.W. (2015), "Impact of trace graphene oxide in coagulation bath on morphology and performance of polysulfone ultrafiltration membrane", Sep. Purif. Technol., 147, 364-371. https://doi.org/10.1016/j.seppur.2015.02.043
  24. Rabiee, H., Vatanpour, V., Farahani, M.H.D.A. and Zarrabi, H. (2015), "Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles", Sep. Purif. Technol., 156, 299-310. https://doi.org/10.1016/j.seppur.2015.10.015
  25. Rana, D., Cho, K., Woo, T., Lee, B.H. and Choe, S. (1999), "Blends of ethylene 1-octene copolymer synthesized by Ziegler-Natta and metallocene catalysts. I. Thermal and mechanical properties", J. Appl. Polym. Sci., 74(5), 1169-1177. https://doi.org/10.1002/(SICI)1097-4628(19991031)74:5<1169::AID-APP13>3.0.CO;2-W
  26. Rana, D., Kim, H.L., Kwag, H. and Choe, S. (2000a), "Hybrid blends of similar ethylene 1-octene copolymers", Polymer, 41(19), 7067-7082. https://doi.org/10.1016/S0032-3861(00)00066-5
  27. Rana, D., Kim, H.L., Kwag, H., Rhee, J., Cho, K., Woo, T., Lee, B. H. and Choe, S. (2000b), "Blends of ethylene 1-octene copolymer synthesized by Ziegler-Natta and metallocene catalysts. II. Rheology and morphological behaviors", J. Appl. Polym. Sci., 76(13), 1950-1964. https://doi.org/10.1002/(SICI)1097-4628(20000624)76:13<1950::AID-APP13>3.0.CO;2-8
  28. Rana, D., Lee, C.H., Cho, K., Lee, B.H. and Choe, S. (1998), "Thermal and mechanical properties for binary blends of metallocene polyethylene with conventional polyolefin", J. Appl. Polym. Sci., 69(12), 2441-2450. https://doi.org/10.1002/(SICI)1097-4628(19980919)69:12<2441::AID-APP15>3.0.CO;2-#
  29. Rana, D., Mandal, B.M. and Bhattacharyya S.N. (1996b), "Analogue calorimetric studies of blends of poly(vinyl ester)s and polyacrylate", Macromolecules, 29(5), 1579-1583. https://doi.org/10.1021/ma950954n
  30. Rana, D., Mandal, B.M. and Bhattacharyya, S.N. (1993), "Miscibility and phase diagrams of poly (phenyl acrylate) and poly (styrene-co-acrylonitrile) blends", Polymer, 34(7), 1454-1459. https://doi.org/10.1016/0032-3861(93)90861-4
  31. Rana, D., Mandal, B.M. and Bhattacharyya, S.N. (1996a), "Analogue calorimetry of polymer blends: Poly(styrene-coacrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate)", Polymer, 37(12), 2439-2443. https://doi.org/10.1016/0032-3861(96)85356-0
  32. Ulutan, S. and Balkӧse, D. (1996), "Diffusivity, solubility and permeability of water vapor in flexible PVC/silica composite membranes", J. Membr. Sci., 115(2), 217-224. https://doi.org/10.1016/0376-7388(96)00030-0
  33. Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S. and Astinchap, B. (2011), "Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite", J. Membr. Sci., 375(1-2), 284-294. https://doi.org/10.1016/j.memsci.2011.03.055
  34. Velev, O.D., Jede, T.A., Lobo, R.F. and Lenhoff, A.M. (1997), "Porous silica via colloidal crystallization", Natural, 389(6650), 447-448.
  35. Xu, H.P., Yu, Y.H., Lang, W.Z., Yan, X. and Guo, Y.J. (2015), "Hydrophilic modification of polyvinyl chloride hollow fiber membranes by silica with a weak in situ sol-gel method", RSC Adv., 5(18), 13733-13742. https://doi.org/10.1039/C4RA15687K
  36. Xu, J. and Xu, Z.L. (2002), "Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent", J. Membr. Sci., 208(1), 203-212. https://doi.org/10.1016/S0376-7388(02)00261-2
  37. Yang, S. and Liu, Z.Z. (2003), "Preparation and characterization of polyacrylonitrile ultrafiltration membranes", J. Membr. Sci., 222(1), 87-98. https://doi.org/10.1016/S0376-7388(03)00220-5
  38. Yu, L.Y., Xu, Z.L., Shen, H.M. and Yang, H. (2009), "Preparation and characterization of PVDF-$SiO_2$ composite hollow fiber UF membrane by sol-gel method", J. Membr. Sci., 337(1-2), 257-265. https://doi.org/10.1016/j.memsci.2009.03.054
  39. Zhang, J., Wang, Z.W., Liu, M.X., Zhao, F.L. and Wu, Z.C. (2017), "In-situ modification of PVDF membrane during phaseinversion process using carbon nanosphere sol as coagulation bath for enhancing anti-fouling ability", J. Membr. Sci., 526, 272-280. https://doi.org/10.1016/j.memsci.2016.12.044
  40. Zhang, P.Y., Yang, H., Xu, Z.L., Wei, Y.M., Guo, J.L. and Chen, D.G. (2013), "Characterization and preparation of poly(vinylidene fluoride) (PVDF) microporous membranes with interconnected bicontinuous structures via non-solvent induced phase separation (NIPS)", J. Polym. Res., 20(2), 66-78. https://doi.org/10.1007/s10965-012-0066-4
  41. Zhu, A.P., Cai, A.Y., Zhou, W.D. and Shi, Z.H. (2008), "Effect of flexibility of grafted polymer on the morphology and property of nanosilica/PVC composites", Appl. Surf. Sci., 254(13), 3745-3752. https://doi.org/10.1016/j.apsusc.2007.11.042