DOI QR코드

DOI QR Code

염산과 NaCl 수용액에서 알루미늄의 부식에 미치는 아미노산의 부식억제효과

Comparative Study of Corrosion Inhibition in Acidic and Neutral Chloride Media by Some Amino Acids

  • 윤종화 (한국외국어대학교 자연과학대학 화학과) ;
  • 김연규 (한국외국어대학교 자연과학대학 화학과)
  • Yoon, Jonghwa (Department of Chemistry, College of Natural Science, Hankuk University of Foreign Studies) ;
  • Kim, Younkyoo (Department of Chemistry, College of Natural Science, Hankuk University of Foreign Studies)
  • 투고 : 2018.05.15
  • 심사 : 2018.07.26
  • 발행 : 2018.10.20

초록

공기가 제거된 0.5 M HCl 과 0.5 M NaCl 용액에서 일어나는 알루미늄의 부식에 대하여 알라닌(Ala), 히스티딘(His) 과 메티오닌(Met)의 부식억제 효과를 조사하였다. HCl에 용해된 Ala, His, Met의 경우 모두 환원반응 속도가 감소되어 부식이 억제 되었으며, 부식억제 효율은 Met$10^{-4\;}M$ 보다 묽은 용액에서 Langmuir 흡착 등온식이 적용되었으나 $10^{-4\;}M$ 보다 진한 용액에서는 흡착된 분자 사이의 상호작용에 의하여 Temkin의 대수함수 등온식이 적용되었다.

Inhibition effects of alanine (Ala), histidine (His), methionine (Met) on the corrosion of aluminum were investigated in deaerated 0.5 M HCl and NaCl solution. In HCl solution the inhibition efficiency for the aluminum corrosion depended on the cathodic inhibition, and the inhibition efficiency was increased in the order of Met$10^{-4\;}M$ the adsorption process can be explained by Langmuir isotherm, however, in the case of higher concentration by Temkin logarithmic isotherm due to the interaction between the adsorbed molecules.

키워드

참고문헌

  1. Pourbaix, M. Atlas of Electrochemical Equilibria (English Ed. by J.A. Franklin), National Association of Corrosion Engineers: Huston, Texas, 1994; p 168.
  2. Bockris, O'M.; Khan, S. U. M. Surface Electrochemistry, A Molecular level Approach, Plenum: New York, 1993; p 771.
  3. Vargel, C.; Jacques, M.; Schmidt, M. P. Corrosion of Aluminum, Science-Direct Online Edition, Elsevier: 2004; p 113.
  4. El-Shfei, A. A.; Abd El-Maksoud, S. A.; Fouda, A. S. Corros. Sci. 2004, 46, 579. https://doi.org/10.1016/S0010-938X(03)00067-2
  5. Barik, R. C.; Wharton, J. A.; Wood, R. J. K.; Stokes, K. R.; Jones, R. L. Surf. Coat. Tech. 2005, 199, 158. https://doi.org/10.1016/j.surfcoat.2004.09.038
  6. Sherif, E. M.; Park, S.-M. Electrochim. Acta 2006, 51, 1313. https://doi.org/10.1016/j.electacta.2005.06.018
  7. Lee, W.; Pyun, S. Electrochim. Acta 2000, 45, 1901. https://doi.org/10.1016/S0013-4686(99)00418-1
  8. Osman, M. M. Mater. Chem. Phys. 2001, 71, 12. https://doi.org/10.1016/S0254-0584(00)00510-1
  9. Zhu, D.; van Ooij, W. J. Corros. Sci. 2003, 45, 2177. https://doi.org/10.1016/S0010-938X(03)00061-1
  10. Abdel-Garber, A. M.; Abd-El-Nabey, B. A.; Sidahmed, I. M.; El-Zayady, A. M.; Saadawy, M. Mater. Chem. Phys. 2006, 98, 291. https://doi.org/10.1016/j.matchemphys.2005.09.023
  11. Rozenfeld, I. L. Corrosion Inhibitors (Translated by Ron and Hilary Hardin), McGraw-Hill: New York, 1981; p 113.
  12. Bereket, G.; Yurt, A. Corros. Sci. 2001, 43, 1179. https://doi.org/10.1016/S0010-938X(00)00135-9
  13. Yurt, A.; Bereket, G.; Ogretir, C. J. Mol. Struct. Theochem. 2005, 725, 215. https://doi.org/10.1016/j.theochem.2005.01.048
  14. Chon, J.-K.; Kim, Y. J. Korean Chem. Soc. 2008, 52, 434. https://doi.org/10.5012/jkcs.2008.52.4.434
  15. Chon, J.-K.; Kim, Y. J. Korean Electrochem. Soc. 2009, 12, 311. https://doi.org/10.5229/JKES.2009.12.4.311
  16. Kim, Y. J. Korean Chem. Soc. 2010, 54, 680. https://doi.org/10.5012/jkcs.2010.54.6.680
  17. Zaferani, S. H.; Sharifi, M.; Zaarei, D.; Shishesaz, M. R. J. Environ. Chem. Eng. 2013, 1, 652. https://doi.org/10.1016/j.jece.2013.09.019
  18. Saifia, H.; Bernarda, M. C.; Joiret, S.; Rahmounia, K.; Takenoutia, H.; Talhib, B. Mater. Chem. Phys. 2010, 120, 661. https://doi.org/10.1016/j.matchemphys.2009.12.011
  19. Bobina, M.; Kellenberger, A.; Millet, J.-P.; Muntean, C.; Vaszilcsin, N. Corr. Sci. 2013, 69, 389. https://doi.org/10.1016/j.corsci.2012.12.020
  20. Kim, Y. J. Korean Chem. Soc. 2015, 59, 125. https://doi.org/10.5012/jkcs.2015.59.2.125
  21. Harris, D. C. Quantitative Chemical Analysis, 7th Edition, Freeman & Co.: New York, 2007; p 182.
  22. Damaskin, B. B.; Petrii, O. A.; Batrakov, V. V. Adsorption of Organic Compounds on Electrodes (English Ed. by E. B. Uvarov), Plenum press: New York, 1971; p 86.
  23. Gileadi, E. Electrode Kinetics for Chemists; Chemical Engineers and Material Scientists, VCH Publisher: New York, 1993; p 267.
  24. Bockris, O'M.; Khan, S. U. M. Surface Electrochemistry; A Molecular Level Approach, Plenum: New York, 1993; p 263.
  25. Atkins, P. W. Physical Chemistry, 4th Edition; Oxford University Press: Oxford, 1993; p 885.
  26. Badawy, W. A.; Ismail, K. M.; Fathi, A. M. Electrochim. Acta 2006, 51, 4182. https://doi.org/10.1016/j.electacta.2005.11.037
  27. Ismail, K. M. Electrochim. Acta 2007, 52, 7819.
  28. Ashassi-Sorkhabi, H.; Ghasemi, Z.; Seifzadeh, D. Appl. Surf. Sci. 2005, 249, 408. https://doi.org/10.1016/j.apsusc.2004.12.016
  29. Thomsen, L.; Tadich, A.; Riley, D. P.; Cowie, B. C. C.; Gladys, M. J. J. Phys. Chem. C 2012, 116, 9472. https://doi.org/10.1021/jp207847j
  30. Mahapatra, M.; Burkholder, L.; Bai, Y.; Garvey, M.; Boscoboinik, J. A.; Hirschmugl, C.; Tysoe, W. T. J. Phys. Chem. C 2014, 118, 6856. https://doi.org/10.1021/jp412651j
  31. Humblot, V.; Tielens, F.; Luque, N. B.; Hampartsoumian, H.; Methivier, C.; Pradier, C.-M. Langmuir 2014, 30, 203. https://doi.org/10.1021/la404262m
  32. Schiffrin, A.; Riemann, A.; Auwarter, W.; Pennec, Y.; Weber-Bargioni, A.; Cvetko, D.; Cossaro, A.; Morgante, A.; Barth, J. V. PNAS 2007, 104, 5279 (The National Academy of Sciences of the USA). https://doi.org/10.1073/pnas.0607867104