DOI QR코드

DOI QR Code

Crystal Form of Celecoxib: Preparation, Characterization and Dissolution

  • Received : 2018.06.11
  • Accepted : 2018.07.24
  • Published : 2018.10.20

Abstract

Celecoxib (4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide) is a cyclooxygenase-2 inhibitor used in the treatment of arthritis, acute pain, and dysmenorrhoea. Celecoxib is a Biopharmaceutics Classification System (BCS) class II compound whose oral bioavailability is highly limited owing to its poor aqueous solubility. Several polymorphs of celecoxib have been identified as Form I, Form II, and Form III with melting points of about $162.8^{\circ}C$, $161.5^{\circ}C$, and $160.8^{\circ}C$, respectively. Form IV was generated from the precipitated suspension in the presence of HPMC (Hydroxypropyl methylcellulose) and Polysorbate 80. A rapid rate of dissolution is useful because the rate of dissolution of a drug typically increases its bioavailability. The aim of this study was to investigate the possibility of production of new crystal form of celecoxib that has higher solubility than Form III. New crystal form of celecoxib (Form A) has been isolated by recrystallization and characterized by differential scanning calorimetry (DSC), thermogravimetric (TG) analysis and powder X-ray diffractometry (PXRD). Form A was dissolved faster than Form III. At 30 minutes, the dissolution of Form A was 97.3%, whereas the dissolution of Form III was 82.2% (p < 0.1). After storage of three months at $20^{\circ}C$, in 24% RH (Relative Humidity), the crystal form was not transformed.

Keywords

References

  1. Fiese, E. F.; Hagen, T. A. In The theory and practice of industrial pharmacy, Lachman, L., Lieberman, H. A., Kanig, J. L., Eds.; Lea & Febiger: Philadelphia, 1986; p 171.
  2. Wells, J. In Pharmaceutics, Aulton, M. Ed.; Churchill Livingstone: Edinburgh, London, New York, Philadelphia, St. Louis, Sydney, Toronto, 2002; p 113.
  3. Q6A International Conference on Harmonization; Guidance on Q6A Specifications, Federal Register 2000, 65, 83041.
  4. Kim, S. K.; Bang, H. C.; Sohn, Y. T. J. Therm. Anal. Calorim. 2017, 127, 1715. https://doi.org/10.1007/s10973-016-6027-0
  5. Griesser, U. J.; Weigand, D.; Rollinger, J. M.; Haddow, M.; Gstrein, E. J. Therm. Anal. Calorim. 2004, 77, 511. https://doi.org/10.1023/B:JTAN.0000038990.43475.db
  6. Dichi, E.; Legendre, B.; Sghaier, M. J. Therm. Anal. Calorim. 2014, 115, 1551. https://doi.org/10.1007/s10973-013-3429-0
  7. Seo, H. O.; Sohn, Y. T. J. Therm. Anal. Calorim. 2015, 120, 749. https://doi.org/10.1007/s10973-014-4126-3
  8. Tak, S. R; Sohn, Y. T. J. Therm. Anal. Calorim. 2016, 123, 2477. https://doi.org/10.1007/s10973-015-4897-1
  9. Di, M. P.; Barthelemy, C.; Palmieri, G. F.; Martelli, S. Eur. J. Pharm. Sci. 2001, 14, 293. https://doi.org/10.1016/S0928-0987(01)00179-8
  10. Brittain, H. G. In Polymorphism in pharmaceutical solids, Brittain H.G., Ed.: Marcel Dekker: New York, 1999; p 227.
  11. Simon, L. S.; Lanza, F. L.; Lipsky, P. E.; Hubbard, R. C.; Talwalker, S.; Schwartz, B. D.; Isakson, P. C.; Geis, G. S. Arthritis Rheum. 1998, 41, 1591. https://doi.org/10.1002/1529-0131(199809)41:9<1591::AID-ART9>3.0.CO;2-J
  12. Chuang, H. C.; Kardosh, A.; Gaffney, K. J.; Petasis, N. A.; Schonthal, A. H. Mol. Cancer. 2008, 7, 38.
  13. Ferro, L. J.; Miyake, P. J. US 7476744 B2, 2009.
  14. Morissette, S. L.; Almarsson, O.; Peterson, M. L.; Remenar, J. F.; Read, M. J.; Lemmo, A. V.; Ellis, S.; Cima, M. J.; Gardner, C. R. Adv. Drug Deliv. Rev. 2004, 56, 275. https://doi.org/10.1016/j.addr.2003.10.020
  15. Chawla, G.; Gupta, P.; Hilagavathi, T. R.; Chakraborti, A. K.; Bansal, A. K. Eur. J. Pharm. Sci. 2003, 20, 305. https://doi.org/10.1016/S0928-0987(03)00201-X
  16. Hageman, M. J.; Kararli, T. T.; Mackin, L. A.; Miyake, P. J.; Rohrs, B. R.; Stefanski, K. L. US 6964978 B2, 2005.
  17. Paradkar, A. R.; Chauhan, B.; Yammamura, S.; Pawar, A. P. Drug Dev. Ind. Pharm. 2003, 29, 739. https://doi.org/10.1081/DDC-120021773
  18. Dissolution methods. US Food and Drug Administration, 2016.
  19. Lu, G. W.; Hawley, M.; Smith, M.; Geige, B. M.; Pfund, W. J. Pharm. Sci. 2006, 95, 305. https://doi.org/10.1002/jps.20522
  20. Grzybowska, K.; Paluch, M.; Grzybowski, A.; Wojnarowska, Z.; Hawelek, L.; Kolodziejczyk, K.; Nagi, K. L. J. Phys. Chem. B. 2010, 114, 12792. https://doi.org/10.1021/jp1040212
  21. Gupta, P.; Kakumanu, V. K.; Bansal, A. K. Pharm. Res. 2004, 21, 1762. https://doi.org/10.1023/B:PHAM.0000045226.42859.b8
  22. Guillory, J. K. In Polymorphism in pharmaceutical solids, Brittain H. G., Ed.: Marcel Dekker, New York, 1999; p 183.
  23. Hendriksen, B. A. Int. J. Pharm. 1990, 60, 243. https://doi.org/10.1016/0378-5173(90)90078-I