DOI QR코드

DOI QR Code

Participation of Opioid Pathway in the Central Antinociceptive Effects of Eugenol

  • Kang, Song-hee (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Kang, Sa-won (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Kim, Jae-ho (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Kim, Hee-young (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Ryu, Hyeon-seo (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Bae, So-yeon (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Oh, Ju-ae (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Lee, Jun-hyuk (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Hyun, Ji-hee (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Ahn, Dong Kuk (Department of Oral Physiology, School of Dentistry, Kyungpook National University)
  • Received : 2018.08.31
  • Accepted : 2018.09.18
  • Published : 2018.09.30

Abstract

The aim of the present study was to evaluate the central antinociceptive effects of eugenol after intraperitoneal administration. Experiments were carried out using male Sprague-Dawley rats. Subcutaneous injection of 5% formalin-induced nociceptive behavioral responses was used as the pain model. Subcutaneous injection of 5% formalin significantly produced nociceptive responses by increasing the licking time during nociceptive behavior. Subsequent intraperitoneal injection of 100 mg/kg of eugenol led to a significant decrease in the licking time. However, low dose of eugenol (50 mg/kg) did not affect the nociceptive behavioral responses produced by subcutaneous injection of formalin. Intrathecal injection of $30{\mu}g$ of naloxone, an opioid receptor antagonist, significantly blocked antinociceptive effects produced by intraperitoneal injection of eugenol. Neither intrathecal injection of methysergide ($30{\mu}g$), a serotonin receptor antagonist nor phentolamine ($30{\mu}g$), an ${\alpha}-adrenergic$ receptor antagonist influenced antinociceptive effects of eugenol, as compared to the vehicle treatment. These results suggest that central opioid pathway participates in mediating the antinociceptive effects of eugenol.

Keywords

References

  1. Li W, Tsubouchi R, Qiao S, Haneda M, Murakami K, Yoshino M. Inhibitory action of eugenol compounds on the production of nitric oxide in RAW264.7 macrophages. Biomed Res. 2006;27:69-74. doi: https://doi.org/10.2220/biomedres.27.69.
  2. Kim SS, Oh OJ, Min HY, Park EJ, Kim Y, Park HJ, Nam Han Y, Lee SK. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW 264.7 cells. Life Sci. 2003;73:337-348. doi:https://doi.org/10.1016/S0024-3205(03)00288-1.
  3. Briseno BM, Willershausen B. Root canal sealer cytotoxicity on human gingival fibroblasts. 1. Zinc oxide-eugenol-based sealers. J Endod. 1990;16:383-386. doi:https://doi.org/10.1016/S0099-2399(06)81910-2.
  4. Goerig AC, Payne TF, del Rio CE. The pulpal response to ZOE with stock eugenol versus ZOE with purified eugenol. Oral Surg Oral Med Oral Pathol. 1980 ;50:557-562. https://doi.org/10.1016/0030-4220(80)90440-5
  5. Horsted P, El Attar K, Langeland K. Capping of monkey pulps with Dycal and a Ca-eugenol cement. Oral Surg Oral Med Oral Pathol. 1981;52:531-553. https://doi.org/10.1016/0030-4220(81)90366-2
  6. Koh T, Murakami Y, Tanaka S, Machino M, Sakagami H. Re-evaluation of anti-inflammatory potential of eugenol in IL-$1{\beta}$-stimulated gingival fibroblast and pulp cells. In Vivo. 2013;27:269-273. doi:http://iv.iiarjournals.org/content/27/2/269.long.
  7. Hansen EK, Asmussen E. Influence of temporary filling materials on effect of dentin-bonding agents. Scand J Dent Res. 1987;95:516-520.
  8. Anpo M, Shirayama K, Tsutsui T. Cytotoxic effect of eugenol on the expression of molecular markers related to the osteogenic differentiation of human dental pulp cells. Odontology. 2011;99:188-192. doi:10.1007/s10266-011-0009-2.
  9. Fujisawa S, Atsumi T, Satoh K, Sakagami H. Interaction between 2-ethoxybenzoic acid (EBA) and eugenol, and related changes in cytotoxicity. J Dent Res. 2003;82:43-47. https://doi.org/10.1177/154405910308200110
  10. Wie MB, Won MH, Lee KH, Shin JH, Lee JC, Suh HW, Song DK, Kim YH. Eugenol protects neuronal cells from excitotoxic and oxidative injury in primary cortical cultures. Neurosci Lett. 1997;225:93-96. doi: https://doi.org/10.1016/S0304-3940(97)00195-X.
  11. Irie Y, Keung WM. Rhizoma acori graminei and its active principles protect PC-12 cells from the toxic effect of amyloid- ${\beta}$ peptide. Brain Res. 2003;963:282-289. doi:https://doi.org/10.1016/S0006-8993(02)04050-7.
  12. Won MH, Lee JC, Kim YH, Song DK, Suh HW, Oh YS, Kim JH, Shin TK, Lee YJ, Wie MB. Postischemic hypothermia induced by eugenol protects hippocampal neurons from global ischemia in gerbils. Neurosci Lett. 1998;254:101-104. doi:https://doi.org/10.1016/S0304-3940(98)00664-8.
  13. Nangle MR, Gibson TM, Cotter MA, Cameron NE. Effects of eugenol on nerve and vascular dysfunction in streptozotocin- diabetic rats. Planta Med. 2006;72:494-500. doi:10.1055/s-2005-916262.
  14. Norte MC, Cosentino RM, Lazarini CA. Effects of methyl- eugenol administration on behavioral models related to depression and anxiety, in rats. Phytomedicin.2005;12: 294-298. doi:https://doi.org/10.1016/j.phymed.2003.12.007.
  15. Carlini EA, Dallmeier K, Zelger JL. Methyleugenol as a surgical anesthetic in rodents. Experientia. 1981;37:588-589 https://doi.org/10.1007/BF01990065
  16. Sell AB, Carlini EA. Anesthetic action of methyleugenol and other eugenol derivatives. Pharmacology. 1976;14:367-377. doi:https://doi.org/10.1159/000136617.
  17. Guenette SA, Beaudry F, Marier JF, Vachon P. Pharmacokinetics and anesthetic activity of eugenol in male Sprague-Dawley rats. J Vet Pharmacol Ther. 2007;30:91-92. doi:https://doi.org/ 10.1111/j.1365-2885.2007.00814.x.
  18. Kozam G. The effect of eugenol on nerve transmission. Oral Surg Oral Med Oral Pathol. 1977;44:799-805. https://doi.org/10.1016/0030-4220(77)90390-5
  19. Yano S, Suzuki Y, Yuzurihara M, Kase Y, Takeda S, Watanabe S, Aburada M, Miyamoto K. Antinociceptive effect of methyleugenol on formalin-induced hyperalgesia in mice. Eur J Pharmacol. 2006;553:99-103. doi:https://doi.org/10.1016/j.ejphar.2006.09.020.
  20. Wang ZJ, Tabakoff B, Levinson SR, Heinbockel T. Inhibition of Nav1.7 channels by methyl eugenol as a mechanism underlying its antinociceptive and anesthetic actions. Acta Pharmacol Sin. 2015;36:791-799. doi:10.1038/aps.2015.26.
  21. Chung G, Im ST, Kim YH, Jung SJ, Rhyu MR, Oh SB. Activation of transient receptor potential ankyrin 1 by eugenol. Neuroscience. 2014;261:153-160. doi: https://doi.org/10.1016/j.neuroscience.2013.12.047
  22. Park CK, Kim K, Jung SJ, Kim MJ, Ahn DK, Hong SD, Kim JS, Oh SB. Molecular mechanism for local anesthetic action of eugenol in the rat trigeminal system. Pain. 2009;144:84-94. doi:10.1016/j.pain.2009.03.016. Epub 2009 Apr 18.
  23. Abbott FV, Franklin KB, Westbrook RF. The formalin test: scoring properties of the first and second phases of the pain response in rats. Pain. 1995;60:91-102. https://doi.org/10.1016/0304-3959(94)00095-V
  24. Choi HS, Ju JS, Lee HJ, Jung CY, Kim BC, Park JS, Ahn DK. Effects of TNF-alpha injected intracisternally on the nociceptive jaw-opening reflex and orofacial formalin test in freely moving rats. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:613-618. doi:https://doi.org/10.1016/S0278-5846(03)00049-6.
  25. Choi HS, Ju JS, Lee HJ, Kim BC, Park JS, Ahn DK. Effects of intracisternal injection of interleukin-6 on nociceptive jaw opening reflex and orofacial formalin test in freely moving rats. Brain Res Bull. 2003;59:365-370. doi:https://doi.org/10.1016/S0361-9230(02)00931-0.
  26. Raboisson P, Dallel R. The orofacial formalin test. Neurosci Biobehav Rev. 2004;28:219-226. doi:https://doi.org/10.1016/ j.neubiorev.2003.12.003.
  27. Ahn DK, Lee KR, Lee HJ, Kim SK, Choi HS, Lim EJ, Park JS. Intracisternal administration of chemokines facilitated formalin-induced behavioral responses in the orofacial area of freely moving rats. Brain Res Bull. 2005;66:50-58. doi: https://doi.org/10.1016/j.brainresbull.2005.03.015.
  28. Yang GY, Woo YW, Park MK, Bae YC, Ahn DK, Bonfa E. Intracisternal administration of NR2 antagonists attenuates facial formalin-induced nociceptive behavior in rats. J Orofac Pain. 2010;24:203-211.
  29. Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain. 1992;51:5-17. doi:10.1016/0304-3959(92)90003-T.
  30. Raboisson P, Dallel R, Clavelou P, Sessle BJ, Woda A. Effects of subcutaneous formalin on the activity of trigeminal brain stem nociceptive neurones in the rat. J Neurophysiol. 1995;73:496-505. doi:10.1152/jn.1995.73.2.496.
  31. Jeon HJ, Han SR, Lim KH, Won KA, Bae YC, Ahn DK. Intracisternal administration of NR2 subunit antagonists attenuates the nociceptive behavior and p-p38 MAPK expression produced by compression of the trigeminal nerve root. Mol Pain. 2011;7:46. doi: 10.1186/1744-8069-7-46.
  32. Won KA, Kim MJ, Yang KY, Park JS, Lee MK, Park MK, Bae YC, Ahn DK. The glial-neuronal GRK2 pathway participates in the development of trigeminal neuropathic pain in rats. J Pain. 2014;15:250-261. doi: 10.1016/j.jpain.2013.10.013.
  33. Jorkjend L, Skoglund LA. Effect of non-eugenol- and eugenol-containing periodontal dressings on the incidence and severity of pain after periodontal soft tissue surgery. J Clin Periodontol. 1990;17:341-344. doi:https://doi.org/10.1111/j.1600-051X. 1990.tb00028.x.
  34. Hodosh AJ, Hodosh S, Hodosh M. Potassium nitrate-zinc oxide eugenol temporary cement for provisional crowns to diminish postpreparation tooth pain. J Prosthet Dent. 1993; 70:493-495. doi:https://doi.org/10.1016/0022-3913(93)90260-U.
  35. Brodin P. Differential inhibition of A, B and C fibres in the rat vagus nerve by lidocaine, eugenol and formaldehyde. Arch Oral Biol. 1985;30:477-480. https://doi.org/10.1016/0003-9969(85)90093-7
  36. Li HY, Lee BK, Kim JS, Jung SJ, Oh SB. Eugenol Inhibits ATP-induced P2X Currents in Trigeminal Ganglion Neurons. Korean J Physiol Pharmacol. 2008 ;12:315-321. doi:10.4196/kjpp.2008.12.6.315.
  37. Cho JS, Kim TH, Lim JM, Song JH. Effects of eugenol on Na+ currents in rat dorsal root ganglion neurons. Brain Res. 2008;1243:53-62. doi: https://doi.org/10.1016/j.brainres.2008.09.030.
  38. Basbaum AI, Fields HL. Endogenous pain control mechanisms: review and hypothesis. Ann Neurol. 1978;4:451-462. doi: https://doi.org/10.1002/ana.410040511.
  39. Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;7:309-338. doi:https://doi.org/10.1146/annurev.ne.07.030184.001521.
  40. Reynolds DV. Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science. 1969;164:444-445. doi: 10.1126/science.164.3878.444.
  41. Mayer DJ, Wolfle TL, Akil H, Carder B, Liebeskind JC. Analgesia from electrical stimulation in the brainstem of the rat. Science. 1971 ;174:1351-1354. doi:10.1126/science.174.4016.1351
  42. Llewelyn MB, Azami J, Roberts MH. The effect of modification of 5-hydroxytryptamine function in nucleus raphe magnus on nociceptive threshold. Brain Res. 1984;306: 165-170. doi:https://doi.org/10.1016/0006-8993(84)90365-2.
  43. Ossipov MH, Chatterjee TK, Gebhart GF. Locus coeruleus lesions in the rat enhance the antinociceptive potency of centrally administered clonidine but not morphine. Brain Res. 1985;341:320-330. doi:https://doi.org/10.1016/0006-8993(85) 91071-6.
  44. Simson PE, Weiss JM. Alpha-2 receptor blockade increases responsiveness of locus coeruleus neurons to excitatory stimulation. J Neurosci. 1987;7:1732-1740. doi:https://doi.org/10.1523/JNEUROSCI.07-06-01732.1987.
  45. Watkins LR, Mayer DJ. Organization of endogenous opiate and nonopiate pain control systems. Science. 1982;216: 1185-1192. doi:10.1126/science.6281891.
  46. Ohkubo T, Shibata M. The selective capsaicin antagonist capsazepine abolishes the antinociceptive action of eugenol and guaiacol. J Dent Res. 1997;76:848-851. doi:https://doi.org/10.1177/00220345970760040501.