References
- Adhikari, S., Murmu, T. and McCarthy, M.A. (2013), "Dynamic finite element analysis of axially vibrating nonlocal rods", Finite Elem. Anal. Des., 63, 42-50. https://doi.org/10.1016/j.finel.2012.08.001
- Adhikari, S., Murmu, T. and McCarthy, M.A. (2014), "Frequency domain analysis of nonlocal rods embedded in an elastic medium", Physica E: Low-dimen. Syst. Nanostruct., 59, 33-40. https://doi.org/10.1016/j.physe.2013.11.001
- Akgoz, B. and Civalek, O. (2011), "Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories", J. Computat. Theor. Nanosci., 8, 1821-1827. https://doi.org/10.1166/jctn.2011.1888
- Akgoz, B. and Civalek, O. (2013), "Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM)", Compos. Part B: Eng., 55, 263-268. https://doi.org/10.1016/j.compositesb.2013.06.035
- Akgoz, B. and Civalek, O. (2017), "Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams", Compos. Part B: Eng., 129, 77-87. https://doi.org/10.1016/j.compositesb.2017.07.024
- Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., Int. J., 25(2), 141-155.
- Amar, L.H.H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate", Steel Compos. Struct., Int. J., 26(1), 89-102.
- Assadi, A. and Farshi, B. (2011), "Size-dependent longitudinal and transverse wave propagation in embedded nanotubes with consideration of surface effects", Acta Mech., 222(1-2), 27-39. https://doi.org/10.1007/s00707-011-0521-z
- Aydogdu, M. (2009), "Axial vibration of the nanorods with the nonlocal continuum rod model", Physica E: Low-dimen. Syst. Nanostruct., 41(5), 861-864. https://doi.org/10.1016/j.physe.2009.01.007
- Aydogdu, M. (2014), "A nonlocal rod model for axial vibration of double-walled carbon nanotubes including axial Van der Waals force effects", J. Vib. Control, 21(16), 3132-3154. https://doi.org/10.1177/1077546313518954
- Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable mode", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
- Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49(1), 1-28. https://doi.org/10.1115/1.3101882
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
- Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
- Faroughi, S. and Shaat, M. (2017), "Poisson ratio effects on the mechanics of auxetic nanobeams", Eur. J. Mech. / A Solids, 70, 8-14.
- Faroughi, S., Goushegir, S.M.H., Khodaparast, H.H. and Friswell, M.I. (2017), "Nonlocal elasticity in plates using novel trial functions", Int. J. Mech. Sci., 130, 221-233. https://doi.org/10.1016/j.ijmecsci.2017.05.034
- Fernandez-Saez, J., Zaera, R., Loya, J. and Reddy, J. (2016), "Bending of Euler-Bernoulli beams using Eringen's integral formulation: a paradox resolved", Int. J. Eng. Sci., 99, 107-116. https://doi.org/10.1016/j.ijengsci.2015.10.013
- Goushegir, S.M.H. and Faroughi, S. (2016), "Analysis of axial vibration of non-uniform nanorods using boundary characteristic orthogonal polynomials", Modares Mech. Eng., 16(1), 203-212.
- Goushegir, S.M.H. and Faroughi, S. (2017), "Free vibration and wave propagation of thick plates using the generalized nonlocal strain gradient theory", J. Theor. Appl. Vib. Acoust., 3(2), 165-198.
- Guven, U. (2014), "Love-Bishop rod solution based on strain gradient elasticity theory", Comptes Rendus Mecanique, 342, 8-16. https://doi.org/10.1016/j.crme.2013.10.011
- Hsu, J.-C., Lee, H.-L. and Chang, W.-J. (2011), "Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory", Current Appl. Phys., 11(6), 1384-1388. https://doi.org/10.1016/j.cap.2011.04.026
- Karlicic, D., Cajic, M., Murmu, T. and Adhikari, S. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled doublenanorod systems", Eur. J. Mech.-A/Solids, 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005
- Kiani, K. (2010), "Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique", Physica E: Low-dimen. Syst. Nanostruct., 43(1), 387-397. https://doi.org/10.1016/j.physe.2010.08.022
- Li, X.F., Shen, Z.B., and Lee, K.Y. (2017), "Axial wave propagation and vibration of nonlocal nanorods with radial deformation and inertia", ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, 97, 602-616. https://doi.org/10.1002/zamm.201500186
- Malekzadeh, P. and Karami, G. (2005), "Polynomial and harmonic differential quadrature methods for free vibration of variable thickness thick skew plates", Eng. Struct., 27(10), 1563-1574. https://doi.org/10.1016/j.engstruct.2005.03.017
- Murmu, T. and Adhikari, S. (2010), "Nonlocal effects in the longitudinal vibration of double-nanorod systems", Physica E: Low-dimen. Syst. Nanostruct., 43(1), 415-422. https://doi.org/10.1016/j.physe.2010.08.023
- Narendar, S. and Gopalakrishnan, S. (2011), "Axial wave propagation in coupled nanorod system with nonlocal small scale effects", Compos. Part B: Eng., 42(7), 2013-2023. https://doi.org/10.1016/j.compositesb.2011.05.021
- Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006
- Nazemnezhad, R. and Kamali, K. (2016), "Investigation of the inertia of the lateral motions effect on free axial vibration of nanorods using nonlocal Rayleigh theory", Modares Mech. Eng., 16(5), 19-28. [In Persian]
- Nguyen, N.-T., Kim, N.-I. and Lee, J. (2014), "Analytical solutions for bending of transversely or axially FG nonlocal beams", Steel Compos. Struct., Int. J., 17(5), 641-665. https://doi.org/10.12989/scs.2014.17.5.641
- Rahmani, O., Refaeinejad, V. and Hosseini, S. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., Int. J., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339
- Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons.
- Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156. https://doi.org/10.1016/j.ijmecsci.2016.10.036
- Shaat, M. and Faroughi, S. (2018), "Influence of surface integrity on vibration characteristics of microbeams", Eur. J. Mech. -A/Solids, 71, 365-377. https://doi.org/10.1016/j.euromechsol.2018.04.009
- Simsek, M. (2011), "Forced vibration of an embedded singlewalled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059
- Simsek, M. (2012), "Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods", Computat. Mater. Sci., 61, 257-265. https://doi.org/10.1016/j.commatsci.2012.04.001
- Striz, A., Wang, X. and Bert, C. (1995), "Harmonic differential quadrature method and applications to analysis of structural components", Acta Mech., 111(1-2), 85-94. https://doi.org/10.1007/BF01187729
Cited by
- Aifantis versus Lam strain gradient models of Bishop elastic rods vol.230, pp.8, 2018, https://doi.org/10.1007/s00707-019-02431-w
- A consistent variational formulation of Bishop nonlocal rods vol.32, pp.5, 2018, https://doi.org/10.1007/s00161-019-00843-6
- Large amplitude free torsional vibration analysis of size-dependent circular nanobars using elliptic functions vol.77, pp.4, 2021, https://doi.org/10.12989/sem.2021.77.4.535