References
- Akhras, G. and Li, W. (2007), "Stability and vibration analysis of composite plates using spline finite strips with higher-order shear deformation", Struct. Eng. Mech., Int. J., 27(1), 1-16. https://doi.org/10.12989/sem.2007.27.1.001
- Ashour, A.S. (2003), "Buckling and vibration of symmetric laminated composite plates with edges elastically restrained", Steel Compos. Struct., Int. J., 3(6), 439-450. https://doi.org/10.12989/scs.2003.3.6.439
- Azhari, M. and Heidarpour, A. (2011), "Local buckling of thin and moderately thick variable thickness viscoelastic composite plates", Struct. Eng. Mech., Int. J., 40(6), 783-800. https://doi.org/10.12989/sem.2011.40.6.783
- Bassily, S.F. and Dickinson, S.M. (1975), "On the use of beam functions for problems of plates involving free edges", ASME J. Appl. Mech., 42, 858-864. https://doi.org/10.1115/1.3423720
- Bert, C.W., Jang, S.K. and Striz, A.G. (1988), "Two new approximate methods for analyzing free vibration of structural components", AIAA J., 26(5), 612-618. https://doi.org/10.2514/3.9941
- Bhaskar, K. and Dhaoya, J. (2009), "Straightforward power series solutions for rectangular plates", Compos. Struct., 89(2), 253-261. https://doi.org/10.1016/j.compstruct.2008.08.001
- Bhat, R.B. (1985), "Natural frequencies of rectangular plates using characteristic orthogonal polynomials in the Rayleigh Ritz method", J. Sound Vib., 102(4), 493-499. https://doi.org/10.1016/S0022-460X(85)80109-7
- Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005
- Cheung, Y.K. (1968), "The finite strip method in the analysis of elastic plates with two opposite simply supported ends", Proc. Inst. Civil Eng., 40, 1-7.
- Cheung, Y.K. (1976), Finite Strip Method in Structural Analysis, Pergamon Press, Oxford.
- Cheung, M.S., Li, W. and Chidiac, S.E. (1996), Finite Strip Analysis of Bridges, E&FN Spon, New York.
- Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
- Darvizeh, M., Darvizeh, A. and Sharma, C.B. (2002), "Buckling analysis of composite plates using differential quadrature method (DQM)", Steel Compos. Struct., Int. J., 2(2), 99-112. https://doi.org/10.12989/scs.2002.2.2.099
- Dawe, D.J. (1987), "Finite strip models for vibration of Mindlin plates", J. Sound Vib., 59, 441-452.
- Dawe, D.L. and Roufaeil, O.L. (1980), "Rayleigh-Ritz vibration analysis of Mindlin plates", J. Sound Vib., 69, 345-359. https://doi.org/10.1016/0022-460X(80)90477-0
- Eftekhari, S.A. and Jafari, A.A. (2012a), "A novel and accurate Ritz formulation for free vibration of rectangular and skew plates", ASME J. Appl. Mech., 79(6), 064504. https://doi.org/10.1115/1.4006804
- Eftekhari, S.A. and Jafari, A.A. (2012b), "Mixed finite element and differential quadrature method for free and forced vibration and buckling analysis of rectangular plates", Appl. Math. Mech., 33(1), 81-98. https://doi.org/10.1007/s10483-012-1535-6
- Eftekhari, S.A. and Jafari, A.A. (2012c), "A mixed method for free and forced vibration of rectangular plates", Appl. Math. Model., 36, 2814-2831. https://doi.org/10.1016/j.apm.2011.09.050
- Eftekhari, S.A. and Jafari, A.A. (2012d), "High accuracy mixed finite element-Ritz formulation for free vibration analysis of plates with general boundary conditions", Appl. Math. Comput., 219, 1312-1344.
- Eftekhari, S.A. and Jafari, A.A. (2014a), "A mixed method for forced vibration of multi-span rectangular plates carrying moving masses", Arab. J. Sci. Eng., 39, 3225-3250. https://doi.org/10.1007/s13369-013-0926-1
- Eftekhari, S.A. and Jafari, A.A. (2014b), "Accurate variational approach for free vibration of simply supported anisotropic rectangular plates", Arch. Appl. Mech., 84, 607-614. https://doi.org/10.1007/s00419-013-0812-z
- Eftekhari, S.A. and Jafari, A.A. (2014c), "A variational formulation for vibration problem of beams in contact with a bounded compressible fluid and subjected to a travelling mass", Arab. J. Sci. Eng., 39, 5153-5170 https://doi.org/10.1007/s13369-014-1165-9
- Fallah, A., Aghdam, M.M. and Kargarnovin, M.H. (2013), "Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method", Arch. Appl. Mech., 83(2), 177-191. https://doi.org/10.1007/s00419-012-0645-1
- Felix, D.H., Bambill, D.V. and Rossit, C.A. (2011), "A note on buckling and vibration of clamped orthotropic plates under inplane loads", Struct. Eng. Mech., Int. J., 39(1), 115-123. https://doi.org/10.12989/sem.2011.39.1.115
- Gorman, D.J. (1978), "Free vibration analysis of the completely free rectangular plate by the method of superposition", J. Sound Vib., 57(3), 437-447. https://doi.org/10.1016/0022-460X(78)90322-X
- Gorman, D.J. and Ding, W. (1996), "Accurate free vibration analysis of completely free rectangular Mindlin plates using the superposition method", J. Sound Vib., 189, 341-353. https://doi.org/10.1006/jsvi.1996.0023
- Jafari, A.A. and Eftekhari, S.A. (2011), "An efficient mixed methodology for free vibration and buckling analysis of orthotropic rectangular plates", Appl. Math. Comput., 218, 2670-2692.
- Jones, R. and Milne, B.J. (1976), "Application of the extended Kantorovich method to the vibration of clamped rectangular plates", J. Sound Vib., 45(3), 309-316. https://doi.org/10.1016/0022-460X(76)90390-4
- Hashemi, S.H. and Arsanjani, M. (2005), "Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates", Int. J. Solids Struct., 42, 819-853. https://doi.org/10.1016/j.ijsolstr.2004.06.063
- Hashemi, S.H., Atashipour, S.R. and Fadaee, M. (2012), "An exact analytical approach for in-plane and out-of plane free vibration analysis of thick laminated transversely isotropic plates", Arch. Appl. Mech., 82(5), 677-698. https://doi.org/10.1007/s00419-011-0583-3
- Karami, G. and Malekzadeh, P. (2003), "Application of a new differential quadrature methodology for free vibration analysis of plates", Int. J. Numer. Methods Eng., 56(6), 847-868. https://doi.org/10.1002/nme.590
- Lal, R. and Saini, R. (2013), "Buckling and vibration of nonhomogeneous rectangular plates subjected to linearly varying in-plane force", Shock Vib., 20(5), 879-894. https://doi.org/10.1155/2013/579813
- Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vib., 31(3), 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2
- Liew, K.M., Xiang, Y. and Kitipornchai, S. (1993), "Transverse vibration of thick rectangular plates, I. Comprehensive sets of boundary conditions", Comput. Struct., 49, 1-29
- Malekzadeh, P., Karami, G. and Farid, M. (2004), "A semianalytical DQEM for free vibration analysis of thick plates with two opposite edges simply supported", Comput. Methods Appl. Mech. Eng., 193(45-47), 4781-4796. https://doi.org/10.1016/j.cma.2004.05.005
- Mindlin, R.D. (1945), "Influence of rotary inertia and shear deformation on the bending of elastic plates", ASME J. Appl. Mech., 12, 69-76.
- Ng, C.H.W., Zhao, Y.B. and Wei, G.W. (2004), "Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates", Comput. Methods Appl. Mech. Eng., 193(23-26), 2483-2506. https://doi.org/10.1016/j.cma.2004.01.013
- Ovesy, H.R. and Ghannadpour, S.A.M. (2009), "An exact finite strip for the calculation of relative post-buckling stiffness of isotropic plates", Struct. Eng. Mech., Int. J., 31(2), 181-210. https://doi.org/10.12989/sem.2009.31.2.181
- Pachenari, Z. and Attarnejad, R. (2014), "Free vibration of tapered Mindlin plates using basic displacement functions", Arab. J. Sci. Eng. DOI: 10.1007/s13369-014-1071-1
- Rajasekaran, S. and Wilson, A.J. (2013), "Buckling and vibration of rectangular plates of variable thickness with different end conditions by finite difference technique", Struct. Eng. Mech., Int. J., 46(2), 269-294. https://doi.org/10.12989/sem.2013.46.2.269
- Ragb, O., Matbuly, M.S. and Nassar, M. (2014), "Analysis of composite plates using moving least squares differential quadrature method", Appl. Math. Comput., 238(1), 225-236.
- Rao, S.S. (2007), Vibration of Continuous Systems, Wiley, Hoboken.
- Reddy, J.N. (1993), An Introduction to the Finite Element Method, (2nd Edition), McGraw-Hill, New York, NY, USA.
- Tsiatas, G.C. and Yiotis, A.J. (2013), "A BEM-based meshless solution to buckling and vibration problems of orthotropic plates", Eng. Anal. Bound. Elem., 37(3), 579-584. https://doi.org/10.1016/j.enganabound.2013.01.007
- Valizadeh, N., Bui, T.Q., Vu, V.T., Thai, H.T. and Nguyen, M.N. (2013), "Isogeometric simulation for buckling, free and forced vibration of orthotropic plates", Int. J. Appl. Mech., 5(2), 1350017. https://doi.org/10.1142/S1758825113500178
- Wang, X. and Xu, S. (2010), "Free vibration analysis of beams and rectangular plates with free edges by the discrete singular convolution", J. Sound Vib., 329(10), 1780-1792. https://doi.org/10.1016/j.jsv.2009.12.006
- Wu, Z-J., Li, F-M. and Wang, Y-Z. (2014), "Vibration band gap properties of periodic Mindlin plate structure using the spectral element method", Meccanica, 49(3), 725-737. https://doi.org/10.1007/s11012-013-9822-8
- Xiang, Y., Zhao, Y.B. and Wei, G.W. (2002), "Levy solutions for vibration of multi-span rectangular plates", Int. J. Mech. Sci., 44(6), 1195-1218. https://doi.org/10.1016/S0020-7403(02)00027-9
- Zhang, X. and Li, W.L. (2009), "Vibrations of rectangular plates with arbitrary non-uniform elastic edge restraints", J. Sound Vib., 326(1-2), 221-234. https://doi.org/10.1016/j.jsv.2009.04.021
- Zhong, Y. and Yin, J-H. (2008), "Free vibration analysis of a plate on foundation with completely free boundary by finite integral transform method", Mech. Res. Commun., 35(4), 268-275. https://doi.org/10.1016/j.mechrescom.2008.01.004
- Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, (5th Edition), McGraw-Hill, New York, NY, USA.
Cited by
- A study on thermo-elastic interactions in 2D porous media with-without energy dissipation vol.38, pp.5, 2018, https://doi.org/10.12989/scs.2021.38.5.523
- Analytical solutions of the temperature increment in skin tissues caused by moving heating sources vol.40, pp.4, 2018, https://doi.org/10.12989/scs.2021.40.4.511