DOI QR코드

DOI QR Code

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A. (Faculty of Engineering in Eastern Guilan, University of Guilan)
  • Received : 2017.12.23
  • Accepted : 2017.07.22
  • Published : 2018.09.25

Abstract

A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.

Keywords

References

  1. Akhras, G. and Li, W. (2007), "Stability and vibration analysis of composite plates using spline finite strips with higher-order shear deformation", Struct. Eng. Mech., Int. J., 27(1), 1-16. https://doi.org/10.12989/sem.2007.27.1.001
  2. Ashour, A.S. (2003), "Buckling and vibration of symmetric laminated composite plates with edges elastically restrained", Steel Compos. Struct., Int. J., 3(6), 439-450. https://doi.org/10.12989/scs.2003.3.6.439
  3. Azhari, M. and Heidarpour, A. (2011), "Local buckling of thin and moderately thick variable thickness viscoelastic composite plates", Struct. Eng. Mech., Int. J., 40(6), 783-800. https://doi.org/10.12989/sem.2011.40.6.783
  4. Bassily, S.F. and Dickinson, S.M. (1975), "On the use of beam functions for problems of plates involving free edges", ASME J. Appl. Mech., 42, 858-864. https://doi.org/10.1115/1.3423720
  5. Bert, C.W., Jang, S.K. and Striz, A.G. (1988), "Two new approximate methods for analyzing free vibration of structural components", AIAA J., 26(5), 612-618. https://doi.org/10.2514/3.9941
  6. Bhaskar, K. and Dhaoya, J. (2009), "Straightforward power series solutions for rectangular plates", Compos. Struct., 89(2), 253-261. https://doi.org/10.1016/j.compstruct.2008.08.001
  7. Bhat, R.B. (1985), "Natural frequencies of rectangular plates using characteristic orthogonal polynomials in the Rayleigh Ritz method", J. Sound Vib., 102(4), 493-499. https://doi.org/10.1016/S0022-460X(85)80109-7
  8. Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005
  9. Cheung, Y.K. (1968), "The finite strip method in the analysis of elastic plates with two opposite simply supported ends", Proc. Inst. Civil Eng., 40, 1-7.
  10. Cheung, Y.K. (1976), Finite Strip Method in Structural Analysis, Pergamon Press, Oxford.
  11. Cheung, M.S., Li, W. and Chidiac, S.E. (1996), Finite Strip Analysis of Bridges, E&FN Spon, New York.
  12. Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26(2), 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
  13. Darvizeh, M., Darvizeh, A. and Sharma, C.B. (2002), "Buckling analysis of composite plates using differential quadrature method (DQM)", Steel Compos. Struct., Int. J., 2(2), 99-112. https://doi.org/10.12989/scs.2002.2.2.099
  14. Dawe, D.J. (1987), "Finite strip models for vibration of Mindlin plates", J. Sound Vib., 59, 441-452.
  15. Dawe, D.L. and Roufaeil, O.L. (1980), "Rayleigh-Ritz vibration analysis of Mindlin plates", J. Sound Vib., 69, 345-359. https://doi.org/10.1016/0022-460X(80)90477-0
  16. Eftekhari, S.A. and Jafari, A.A. (2012a), "A novel and accurate Ritz formulation for free vibration of rectangular and skew plates", ASME J. Appl. Mech., 79(6), 064504. https://doi.org/10.1115/1.4006804
  17. Eftekhari, S.A. and Jafari, A.A. (2012b), "Mixed finite element and differential quadrature method for free and forced vibration and buckling analysis of rectangular plates", Appl. Math. Mech., 33(1), 81-98. https://doi.org/10.1007/s10483-012-1535-6
  18. Eftekhari, S.A. and Jafari, A.A. (2012c), "A mixed method for free and forced vibration of rectangular plates", Appl. Math. Model., 36, 2814-2831. https://doi.org/10.1016/j.apm.2011.09.050
  19. Eftekhari, S.A. and Jafari, A.A. (2012d), "High accuracy mixed finite element-Ritz formulation for free vibration analysis of plates with general boundary conditions", Appl. Math. Comput., 219, 1312-1344.
  20. Eftekhari, S.A. and Jafari, A.A. (2014a), "A mixed method for forced vibration of multi-span rectangular plates carrying moving masses", Arab. J. Sci. Eng., 39, 3225-3250. https://doi.org/10.1007/s13369-013-0926-1
  21. Eftekhari, S.A. and Jafari, A.A. (2014b), "Accurate variational approach for free vibration of simply supported anisotropic rectangular plates", Arch. Appl. Mech., 84, 607-614. https://doi.org/10.1007/s00419-013-0812-z
  22. Eftekhari, S.A. and Jafari, A.A. (2014c), "A variational formulation for vibration problem of beams in contact with a bounded compressible fluid and subjected to a travelling mass", Arab. J. Sci. Eng., 39, 5153-5170 https://doi.org/10.1007/s13369-014-1165-9
  23. Fallah, A., Aghdam, M.M. and Kargarnovin, M.H. (2013), "Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method", Arch. Appl. Mech., 83(2), 177-191. https://doi.org/10.1007/s00419-012-0645-1
  24. Felix, D.H., Bambill, D.V. and Rossit, C.A. (2011), "A note on buckling and vibration of clamped orthotropic plates under inplane loads", Struct. Eng. Mech., Int. J., 39(1), 115-123. https://doi.org/10.12989/sem.2011.39.1.115
  25. Gorman, D.J. (1978), "Free vibration analysis of the completely free rectangular plate by the method of superposition", J. Sound Vib., 57(3), 437-447. https://doi.org/10.1016/0022-460X(78)90322-X
  26. Gorman, D.J. and Ding, W. (1996), "Accurate free vibration analysis of completely free rectangular Mindlin plates using the superposition method", J. Sound Vib., 189, 341-353. https://doi.org/10.1006/jsvi.1996.0023
  27. Jafari, A.A. and Eftekhari, S.A. (2011), "An efficient mixed methodology for free vibration and buckling analysis of orthotropic rectangular plates", Appl. Math. Comput., 218, 2670-2692.
  28. Jones, R. and Milne, B.J. (1976), "Application of the extended Kantorovich method to the vibration of clamped rectangular plates", J. Sound Vib., 45(3), 309-316. https://doi.org/10.1016/0022-460X(76)90390-4
  29. Hashemi, S.H. and Arsanjani, M. (2005), "Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates", Int. J. Solids Struct., 42, 819-853. https://doi.org/10.1016/j.ijsolstr.2004.06.063
  30. Hashemi, S.H., Atashipour, S.R. and Fadaee, M. (2012), "An exact analytical approach for in-plane and out-of plane free vibration analysis of thick laminated transversely isotropic plates", Arch. Appl. Mech., 82(5), 677-698. https://doi.org/10.1007/s00419-011-0583-3
  31. Karami, G. and Malekzadeh, P. (2003), "Application of a new differential quadrature methodology for free vibration analysis of plates", Int. J. Numer. Methods Eng., 56(6), 847-868. https://doi.org/10.1002/nme.590
  32. Lal, R. and Saini, R. (2013), "Buckling and vibration of nonhomogeneous rectangular plates subjected to linearly varying in-plane force", Shock Vib., 20(5), 879-894. https://doi.org/10.1155/2013/579813
  33. Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vib., 31(3), 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2
  34. Liew, K.M., Xiang, Y. and Kitipornchai, S. (1993), "Transverse vibration of thick rectangular plates, I. Comprehensive sets of boundary conditions", Comput. Struct., 49, 1-29
  35. Malekzadeh, P., Karami, G. and Farid, M. (2004), "A semianalytical DQEM for free vibration analysis of thick plates with two opposite edges simply supported", Comput. Methods Appl. Mech. Eng., 193(45-47), 4781-4796. https://doi.org/10.1016/j.cma.2004.05.005
  36. Mindlin, R.D. (1945), "Influence of rotary inertia and shear deformation on the bending of elastic plates", ASME J. Appl. Mech., 12, 69-76.
  37. Ng, C.H.W., Zhao, Y.B. and Wei, G.W. (2004), "Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates", Comput. Methods Appl. Mech. Eng., 193(23-26), 2483-2506. https://doi.org/10.1016/j.cma.2004.01.013
  38. Ovesy, H.R. and Ghannadpour, S.A.M. (2009), "An exact finite strip for the calculation of relative post-buckling stiffness of isotropic plates", Struct. Eng. Mech., Int. J., 31(2), 181-210. https://doi.org/10.12989/sem.2009.31.2.181
  39. Pachenari, Z. and Attarnejad, R. (2014), "Free vibration of tapered Mindlin plates using basic displacement functions", Arab. J. Sci. Eng. DOI: 10.1007/s13369-014-1071-1
  40. Rajasekaran, S. and Wilson, A.J. (2013), "Buckling and vibration of rectangular plates of variable thickness with different end conditions by finite difference technique", Struct. Eng. Mech., Int. J., 46(2), 269-294. https://doi.org/10.12989/sem.2013.46.2.269
  41. Ragb, O., Matbuly, M.S. and Nassar, M. (2014), "Analysis of composite plates using moving least squares differential quadrature method", Appl. Math. Comput., 238(1), 225-236.
  42. Rao, S.S. (2007), Vibration of Continuous Systems, Wiley, Hoboken.
  43. Reddy, J.N. (1993), An Introduction to the Finite Element Method, (2nd Edition), McGraw-Hill, New York, NY, USA.
  44. Tsiatas, G.C. and Yiotis, A.J. (2013), "A BEM-based meshless solution to buckling and vibration problems of orthotropic plates", Eng. Anal. Bound. Elem., 37(3), 579-584. https://doi.org/10.1016/j.enganabound.2013.01.007
  45. Valizadeh, N., Bui, T.Q., Vu, V.T., Thai, H.T. and Nguyen, M.N. (2013), "Isogeometric simulation for buckling, free and forced vibration of orthotropic plates", Int. J. Appl. Mech., 5(2), 1350017. https://doi.org/10.1142/S1758825113500178
  46. Wang, X. and Xu, S. (2010), "Free vibration analysis of beams and rectangular plates with free edges by the discrete singular convolution", J. Sound Vib., 329(10), 1780-1792. https://doi.org/10.1016/j.jsv.2009.12.006
  47. Wu, Z-J., Li, F-M. and Wang, Y-Z. (2014), "Vibration band gap properties of periodic Mindlin plate structure using the spectral element method", Meccanica, 49(3), 725-737. https://doi.org/10.1007/s11012-013-9822-8
  48. Xiang, Y., Zhao, Y.B. and Wei, G.W. (2002), "Levy solutions for vibration of multi-span rectangular plates", Int. J. Mech. Sci., 44(6), 1195-1218. https://doi.org/10.1016/S0020-7403(02)00027-9
  49. Zhang, X. and Li, W.L. (2009), "Vibrations of rectangular plates with arbitrary non-uniform elastic edge restraints", J. Sound Vib., 326(1-2), 221-234. https://doi.org/10.1016/j.jsv.2009.04.021
  50. Zhong, Y. and Yin, J-H. (2008), "Free vibration analysis of a plate on foundation with completely free boundary by finite integral transform method", Mech. Res. Commun., 35(4), 268-275. https://doi.org/10.1016/j.mechrescom.2008.01.004
  51. Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, (5th Edition), McGraw-Hill, New York, NY, USA.

Cited by

  1. A study on thermo-elastic interactions in 2D porous media with-without energy dissipation vol.38, pp.5, 2018, https://doi.org/10.12989/scs.2021.38.5.523
  2. Analytical solutions of the temperature increment in skin tissues caused by moving heating sources vol.40, pp.4, 2018, https://doi.org/10.12989/scs.2021.40.4.511