DOI QR코드

DOI QR Code

수지상세포의 CD1b 분자와 포식작용의 증가

CD1b in immature dendritic cells acquires increased phagocytotic function

  • 류현정 (국민대학교 과학기술대학 바이오발효합학과)
  • Liew, Hyunjeong (Department of Bio & Fermentation Convergence, Kookmin University)
  • 투고 : 2018.08.28
  • 심사 : 2018.08.30
  • 발행 : 2018.09.30

초록

CD1 분자는 결핵균 유래 지질항원 발현하는 단백질이며, 특히 수지상세포(dendritic cells)가 결핵균 감염시에 발현이 점차 감소함을 관찰하였다. 이는 결핵균의 사균이나 항원만으로는 관찰되지 않는 결과였다. 2차원 전기영동(2D electrophoresis)을 통하여 CD1b 의 인산화를 관찰하였고 이러한 현상이 식세포작용과 연관됨을 확인하였다.

Mycobacterium tuberculosis (MTB)-originated lipid antigen is presented on the antigen-presenting cell surface with CD1b. When monocyte-derived dendritic cells phagocytosed MTB H37Rv (Multiplicity of infection 10, infectivity: 46.89%), the CD1b expression level decreased slowly. Since this was just a live MTB-mediated phenomenon, it was not detected from heat-killed MTB or mycolic acid, which is a unique antigen of MTB. We confirmed that the phosphorylation of CD1b molecules using 2D electrophoresis with staining could phosphorylate and induce the presentation of the lipid antigen using the phagocytosis assay.

키워드

참고문헌

  1. Arora P, Baena A, Yu KOA, Saini NK, Kharkwal SS, Goldberg MF, Kunnath-Velayudhan S, Carreno LJ, Venkataswamy MM, Kim J, et al. 2002. A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens. Nat. Immunol. 3, 435-442. https://doi.org/10.1038/ni780
  2. Bendelac A. 1995. CD1: presenting unusual antigens to unusual T lymphocytes. Science 269, 185-186. https://doi.org/10.1126/science.7542402
  3. Chen WC, Completo GC, Sigal DS, Crocker PR, Saven A, and Paulson JC. 2010. In vivo targeting of B-cell lymphoma with glycan ligands of CD22. Blood 115, 4778-4786. https://doi.org/10.1182/blood-2009-12-257386
  4. Cheng TY, Relloso M, Van Rhijn I, Young DC, Besra GS, Briken V, Zajonc DM, Wilson IA, Porcelli S, and Moody DB. 2006. Role of lipid trimming and CD1 groove size in cellular antigen presentation. EMBO J. 25, 2989-2999. https://doi.org/10.1038/sj.emboj.7601185
  5. Ernst WA, Maher J, Cho S, Niazi KR, Chatterjee D, Moody DB, Besra GS, Watanabe Y, Jensen PE, Porcelli SA, et al. 1998. Molecular interaction of CD1b with lipoglycan antigens. Immunity 8, 331-340. https://doi.org/10.1016/S1074-7613(00)80538-5
  6. He M, Dong C, Xie Y, Li J, Yuan D, Bai Y, and Shao C. 2014. Reciprocal bystander effect between ${\alpha}$-irradiated macrophage and hepatocyte is mediated by cAMP through a membrane signaling pathway. Mutat. Res. 763, 1-9. https://doi.org/10.1016/j.mrgentox.2013.12.007
  7. Jackman RM, Stenger S, Lee A, Moody DB, Rogers RA, Niazi KR, Sugita M, Modlin RL, Peters PJ, and Porcelli SA. 1998. The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens. Immunity 8, 341-351. https://doi.org/10.1016/S1074-7613(00)80539-7
  8. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, et al. 1997. CD1d-restricted and TCR-mediated activation of V14 NKT cells by glycosylceramides. Science 278, 1626-1629. https://doi.org/10.1126/science.278.5343.1626
  9. Kawasaki N, Vela JL, Nycholat CM, Rademacher C, Khurana A, van Rooijen N, Crocker PR, Kronenberg M, and Paulson JC. 2013. Targeted delivery of lipid antigen to macrophages via the CD169/sialoadhesin endocytic pathway induces robust invariant natural killer T cell activation. Proc. Natl. Acad. Sci. USA 110, 7826-7831. https://doi.org/10.1073/pnas.1219888110
  10. Kirchhausen T, Bonifacino JS, and Riezman H. 1997. Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr. Opin. Cell Biol. 9, 488-495. https://doi.org/10.1016/S0955-0674(97)80024-5
  11. Mariotti S, Teloni R, Iona E, Fattorini L, Giannoni F, Romagnoli G, Orefici G, and Nisini R. 2002. Mycobacterium tuberculosis subverts the differentiation of human monocytes into dendritic cells. Eur. J. Immunol. 32, 3050-3058. https://doi.org/10.1002/1521-4141(200211)32:11<3050::AID-IMMU3050>3.0.CO;2-K
  12. Moody DB, Briken V, Cheng TY, Roura-Mir C, Guy MR, Geho DH, Tykocinski ML, Besra GS, and Porcelli SA. 2002. Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat. Immunol. 3, 435-442. https://doi.org/10.1038/ni780
  13. Nguyen TK, Koets AP, Santema WJ, van Eden W, Rutten VP, and Van Rhijn I. 2009. The mycobacterial glycolipid glucose monomycolate induces a memory T cell response comparable to a model protein antigen and no B cell response upon experimental vaccination of cattle. Vaccine 27, 4818-4825. https://doi.org/10.1016/j.vaccine.2009.05.078
  14. Oakley BR, Kirsch DR, and Morris NR. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105, 361-363. https://doi.org/10.1016/0003-2697(80)90470-4
  15. Porcelli S, Morita CT, and Brenner MB. 1992. CD1b restricts the response of human CD4-8-T lymphoyctes to a microbial antigen. Nature 360, 593-597. https://doi.org/10.1038/360593a0
  16. Prigozy TI, Sieling PA, Clemens D, Stewart PL, Behar SM, Porcelli SA, Brenner MB, Modlin RL, and Kronenberg M. 1997. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6, 187-197. https://doi.org/10.1016/S1074-7613(00)80425-2
  17. Saraceni V, Cruz MM, Lauria LM, and Durovni B. 2005. Trends and characteristics of AIDS mortality in the Rio de Janeiro city after the introduction of highly active antiretroviral therapy. Braz. J. Infect. Dis. 9, 209-215.
  18. Saudrais C, Spehner D, de la Salle H, Bohbot A, Cazenave JP, Goud B, Hanau D, and Salamero J. 1998. Intracellular pathway for the generation of functional MHC class II peptide complexes in immature human dendritic cells. J. Immunol. 160, 2597-2607.
  19. Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, and Mann M. 1996a. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl. Acad. Sci. USA 93, 14440-14445. https://doi.org/10.1073/pnas.93.25.14440
  20. Shevchenko A, Wilm M, Vorm O, and Mann M. 1996b. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850-858. https://doi.org/10.1021/ac950914h
  21. Sieling PA, Jullien D, Dahlem M, Tedder TF, Rea TH, Modlin RL, and Porcelli SA. 1999. CD1 expression by dendritic cells in human leprosy lesions: correlation with effective host immunity J. Immunol. 162,1851-1858.
  22. Stenger S, Niazi KR, and Modlin RL. 1998. Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. 161, 3582-3588.
  23. Sugita M, Cao XC, Watts GFM, Rogers RA, Bonifacino JS, and Brenner MB. 2002. Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity 16, 697-706. https://doi.org/10.1016/S1074-7613(02)00311-4
  24. Sugita M, Jackman RM, van Donselaar E, Behar SM, Rogers RA, Peters PJ, Brenner MB, and Porcelli SA. 1996. Cytoplasmic tail-dependent localization of CD1b antigen-presenting molecules to MIICs. Science 273, 349-352. https://doi.org/10.1126/science.273.5273.349
  25. van Hooff JP, Squifflet JP, and Wlodarczyk Z. 2003. A prospective randomized multicenter study of tacrolimus in combination with sirolimus in renal-transplant recipients. Transplantation 75, 1934-1939. https://doi.org/10.1097/01.TP.0000071301.86299.75
  26. Wang D, Kalb SR, and Cotter RJ. 2004. Improved procedures for N-terminal sulfonation of peptides for matrix-assisted laser desorption/ionization post-source decay peptide sequencing Rapid Commun. Mass Spectrom. 18, 96-102. https://doi.org/10.1002/rcm.1289