DOI QR코드

DOI QR Code

APEX 모형을 이용한 유기농경지에서의 질소 부하량 저감을 위한 지표피복 효과

Surface Cover Effect for Reducing Nitrogen Load in Organic Farming Fields using APEX Model

  • So, Hyunchul (Department of Rural Construction Engineering, Chonbuk National University) ;
  • Jang, Taeil (Department of Rural Construction Engineering, Chonbuk National University) ;
  • Kim, Dong-Hyeon (Department of Rural Construction Engineering, Chonbuk National University) ;
  • Seol, Dong-Mun (Department of Rural Construction Engineering, Chonbuk National University) ;
  • Yoon, Kwangsik (Department of Rural and Bio-Systems Engineering, Chonnam National University)
  • 투고 : 2018.04.27
  • 심사 : 2018.08.06
  • 발행 : 2018.09.30

초록

The objectives of this study were to monitor organic farming upland compared with conventional upland field and to evaluate nutrient loads reduction of surface cover effect with long-term historical climate data. APEX(Agricultural Policy Environmental eXtender) model was validated with experimental data and used for assessing surface cover scenarios for 30-year simulation periods. The validated values of RMSE(Root Mean Square Error), RMAE(Root Mean Absolute Error), $R^2$ and E(Nash-Sutcliffe efficiency) for runoff were 1.17-1.37 mm/day, 0.28-0.45 mm/day, 0.88-0.90 and 0.82-0.94 in two treatments, respectively. Those for water quality (nitrogen) were 0.05-0.16 kg/ha, 0.52-0.75 kg/ha, 0.67-0.72 and 0.32-0.70 in two treatments, respectively, and therefore the validated model showed good agreement with the observed runoff and nitrogen load for the study period. When decreasing the surface cover rate of organic farming field to 75%, 50%, 25%, and 0% (conventional field), average annual runoff increased by 7%, 15%, 23% and 31%, respectively. Under same condition of decreasing the surface cover rate, average annual nitrogen loads increased by 1.4 times, 1.7 times, 2.0 times, and 2.3 times compared with organic farming field, respectively. This study showed that it is possible to present an appropriate surface cover ratio to maintain conventional production and minimize nonpoint sources pollution for organic farming system, although long-term monitoring is needed to determine its effects on environmental concerns, crop competition, and other uncertainty.

키워드

참고문헌

  1. Badgley, C., J. Moghtader, E. Quintero, E. Zakem, M. J. Chappell, K. Aviles-Vazquez, A. Samulon, and I. Perfecto, 2007. Organic agriculture and the global food supply. Renewable Agriculture and Food Systems 22(2): 86-108. doi:10.1017/S1742170507001640.
  2. Bakken, A., T. Breland, T. Haraldsen, T. Aamlid, and T. Sveistrup, 2006. Soil fertility in three cropping systems after conversion from conventional to organic farming. Acta Agriculturae Scandinavica: Section B. Soil & Plant Science 56(2): 81-90. doi:10.1080/09064710510029150.
  3. Bengtsson, H., I. Oborn, S. Jonsson, I. Nilsson, and A. Andersson, 2003. Field balances of some mineral nutrients and trace elements in organic and conventional dairy farming - a case study at Ojebyn, Sweden. European Journal of Agronomy 20(0): 101-116. doi:10.1016/S1161-0301(03)00079-0.
  4. Bjorkhaug, H., and A. Blekesaune, 2013. Development of organic farming in Norway: a statistical analysis of neighbourhood effects. Geoforum 45(1): 201-210. doi: 10.1016/j.geoforum.2012.11.005.
  5. Chirinda, N., J. E. Olesen, J. R. Porter, and P. Schjonning, 2010. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer based arable cropping systems. Agriculture Ecosystem & Environment 139(0): 584-594. doi:10.1016/j.agee.2010.10.001.
  6. Cho, H. J., W. H. Seon, H. H. Kying, R. C. Hee, H. S. Jae, and Y. k. Lee, 2009. Physicochemical properties of upland soils under organic farming. Korean Journal of Soil Science and Fertilizer 42(2): 98-102.
  7. Choi, D., J. W. Jung, K. S. Yoon, W. J. Choi, S. Cho, J. Beom, and S. Yoo, 2015. Comparison of unit load from paddy field by various estimation methods. Journal of Environmental Impact Assessment 24(5): 407-419. doi: 10.14249/eia.2015.24.5.407.
  8. Choi, S. K., M. K, Kim, and J. H. Jeong, 2017. National Academy of Agricultural Science, Agricultural Policy/Environmental eXtender Model User's Manual (Korean) Version 0806.
  9. Choi, Y. H., C. H. Won, J. Y. Seo, M. H. Shin, H. J. Yang, K. J. Lim, and J. D. Choi, 2009. Analysis and Comparison about NPS of plane field and alpine field. Journal of korean society on water quality 25(5): 682-688.
  10. Food and Agriculture Organization of the United Nations (FAO), 2018. FAOSTAT: Agricultural area organic in Korea. Available at: www.fao.org/faostat (Last accessed 2018.04.12.).
  11. Gassman, P. W., J. R. Williams, X. Wang, A. Saleh, E. Osei, L. Hauck, C. Izaurralde, and J. Flowers, 2010. The Agricultural Policy Environmental Extender (APEX) model: an emerging tool for landscape and watershed environmental analyses. Trans, American Society of Agricultural and Biological Engineers 55: 1447-1462.
  12. Green, C. H., M. D. Tomer, M. Di Luzio, and J. G. Arnold, 2006. Hydrologic evaluation of the soil and Water assessment tool for a large tile-drained watershed in Iowa. American Society of Agricultural and Biological Engineers 49(2): 413-422.
  13. Her, Y., I. Chaubey, J. Frankenberger, and D. Smith, 2016. Effect of conservation practices implemented by USDA programs at field and watershed scales. Journal of soil and water conservation 71(3): 249-266. doi:10.2489/jswc.71.3.249.
  14. Jung, K. S., 2017. Environment-friendly agriculture, consider its safety and environment. Journal of the Korean Society of Agricultural Engineers 59(2): 2-9.
  15. Kim, M. K., S. K. Choi, G. B. Jung, M. H. Kim, S. C. Hong, K. H. So, and J. H. Jeong, 2014. APEX (Agricultural Policy/Environmental eXtender) model: an emerging tool for agricultural environmental analyses. Korean Journal of Soil Science and Fertilizer 47(3): 187-190. doi:10.7745/KJSSF.2014.47.3.187.
  16. Kleemann, L., A. Abdulai, and M. Buss, 2014. Certification and access to export markets: adoption and return on investment of organic-certified pineapple farming in Ghana. World Development 64: 79-92. doi:10.1016/j.worlddev.2014.05.005.
  17. Koo, J. Y., J. G. Kim, S. K. Choi, M. K. Kim, J. H. Jeong, and K. J. Lim, 2017. Construction of database for application of APEX Model in Korea and Evaluation of applicability to highland field. Journal of the Korean Society of Agricultural Engineers 59(6): 89-100. doi: 10.5389/KSAE.2017.59.6.089.
  18. Lee, T. G., B. W. Gu, and S. J. Park, 2016. Assessment on environmental characteristics of organic paddy and conventional paddy by comparing their soil properties and water quality. Journal of Korean Society of Environmental Engineers 38(9): 504-512. doi:10.4491/KSEE.2016.38.9.504.
  19. Lee, T. G., B. W. Gu, and S. J. Park, 2016. Assessment on environmental characteristics of organic paddy and conventional paddy by comparing their soil properties and water quality. Journal of Korean Society of Environmental Engineers 38(9): 504-512. doi:10.4491/KSEE.2016.38.9.504.
  20. Maeder, P., A. Fliessbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli, 2002. Soil fertility and biodiversity in organic farming. Scicence 296(5573): 1694-1697. doi:10.1126/science.1071148.
  21. Miyazaki, N., K. Kamewada, and S. Iwasaki, 2005. Quality changes of agricultural water passing through paddy fields. Bulletin of the Tochigi Prefectural Agricultural Experiment Station 55: 45-55.
  22. MOE, 2004. Standard method for water pollution process, Ministry of Environment (MOE).
  23. NAAS, 2010. Method of soil chemical analysis, NAAS (National Academy of Agricultural Science), Rural Development Administration.
  24. Nash J. E., and J. V. Sutcliffe, 1970. River flow forecasting through conceptual models Part 1: a discussion of principles. Journal of Hydrology 10(3): 282-290. doi:10.1016/0022-1694(70)90255-6.
  25. Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams, 2011. Soil and water assessment tool theoretical documentation version 2009, Texas Water Resources Institute.
  26. NIER, 2012. Rainfall-runoff survey method, National Institute of Environmental Research (NIER).
  27. NIER, 2015. Results of nonpoint sources pollution survey and its direction, National Institute of Environmental Research (NIER).
  28. Sakaguchi, A., S. Eguchi, T. Kato, M. Kasuya, K. Ono, A. Miyata, and N. Tase, 2014. Development and evaluation of a paddy module for improving hydrological simulation in SWAT. Journal of Agricultural Water Management 137: 116-122. doi:10.1016/j.agwat.2014.01.009.
  29. Shin, M. H., C. H. Won, W. J. Park, Y. H. Choi, J. Y. Shin, K. J. Lim, and J. D. Choi, 2011. Surface cover application for reduction of runoff and sediment discharge from sloping fields. Journal of the Korean Society of Agricultural Engineers 53(6): 129-136. doi:10.5389/KSAE.2011.53.6.129.
  30. Shin, M. H., C. H. Won, W. J. Park, Y. H. Choi, J. R. Jang, K. J. Lim, and J. D. Choi, 2011. Analysis of the reduction effect on NPS pollution loads by surface cover application. Journal of the Korean Society of Agricultural Engineers 53(4): 29-37. doi:10.5389/KSAE.2011.53.4.029.
  31. Shin, M. H., J. R. Jang. Y. H. Jung, D. H. Kum, C. H. Won, S. I. Lee, K. J. Lim, and J. D. Choi, 2014. Application of the surface cover materials for reduction of NPS pollution from actual cultivation. Journal of the Korean Society of Agricultural Engineers 56(3): 31-38. doi:10.5389/KSAE.2014.56.3.031.
  32. So, H. C., T. I. Jang, and S. G. Hong, 2017. Assessing unit load in farmland by application of liquid manure and organic farming. Journal Of The Korean Society Of Rural Planning 23(4): 39-48. doi:10.7581/ksrp.2017.23.4.039.
  33. Solomou, A., A. Sfougaris, and E. Vavoulidou, 2010. The effects of organic and conventional farming systems on selected soil properties of olive groves in central Greece. 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World 65-69.
  34. Song, I., J. Song, J. H. Ryu, K. Kim, J. Jang, and N. S. Kang, 2017. Long-term evaluation of the BMPs scenarios in reducing nutrient surface loads from paddy rice cultivation in Korea using the CREAMS-PADDY model. Paddy and Water Environment 15: 59-69. doi:10.1007/s10333-016-0528-0.
  35. Steglich, E. M., R. C. Izaurralde, and J. R. Williams, 2013. Agricultural Policy/Environmental eXtender Model User's Manual Version 0806.
  36. Steglich, E. M., J. W. Williams, 2013. AgriLIFE RESEARCH Texas A&M System, APEX user's manual version 0806.
  37. Stockdale, E. A., M. A. Shepherd, S. Fortune, and S. P. Cuttle, 2002. Soil fertility in organic farming systems fundamentally different. Soil Use and Management 18: 301-308. doi:/10.1111/j.1475-2743.2002.tb00272.x.
  38. Syvasalo, E., K. Regina, E. Turtola, R. Lemola, and M. Esala, 2006. Fluxes of nitrous oxide and methane, and nitrogen leaching from organically and conventionally cultivated sandy soil in western Finland. Agriculture Ecosystems & Environment 113: 342-348. doi:10.1016/j.agee.2005.10.013.
  39. Tuomisto, H. L., I. D. Hodge, P. Riordan, D. W. Macdonald, 2012. Does organic farming reduce environmental impacts? - A meta-analysis of European research. Journal of Environmental Management 112: 309-320. doi:10.1016/j.jenvman.2012.08.018.