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UNIVALENT FUNCTIONS WITH

POSITIVE COEFFICIENTS INVOLVING

POISSON DISTRIBUTION SERIES

Gangadharan Murugusundaramoorthy

Abstract. The purpose of the present paper is to establish con-
nections between various subclasses of analytic univalent functions
by applying certain convolution operator involving Poisson distribu-
tion series. To be more precise,we investigate such connections with
the classes of analytic univalent functions with positive coefficients
in the open unit disk.

1. Introduction

It is well known that the special functions (series) play an important
role in geometric function theory, especially in the solution by de Branges
[3] of the famous Bieberbach conjecture. The surprising use of special
functions (hypergeometric functions) has prompted renewed interest in
function theory in the last few decades. There is an extensive literature
dealing with geometric properties of different types of special functions,
especially for the generalized, Gaussian hypergeometric functions [2, 7,
8, 12, 13].

A variable x is said to be Poisson distribution if it takes the val-
ues 0, 1, 2, 3, . . . with probabilities e−m,m e−m

1! ,m
2 e−m

2! ,m
3 e−m

3! , . . . re-
spectively, where m is called the parameter. Thus

P (x = k) =
mk e−m

k!
, k = 0, 1, 2, 3, . . .

Received April 7, 2018. Accepted July 12, 2018.
2010 Mathematics Subject Classification. 30C45.
Key words and phrases. univalent, starlike functions, convex functions,

Hadamard product, Poisson distribution.
Dedicated to my Father Prof. P.M.Gangadharan.



530 Gangadharan Murugusundaramoorthy

Recently, Porwal [9, 11] introduce a power series whose coefficients
are probabilities of Poisson distribution

Φ(m, z) = z +

∞∑
n=2

mn−1

(n− 1)!
e−mzn, z ∈ U (1.1)

and we note that, by ratio test the radius of convergence of above series
is infinity.

Let H be the class of functions analytic in the unit disk U = {z ∈ C :
|z| < 1}. Let A be the class of functions f ∈ H of the form

f(z) = z +
∞∑
n=2

anz
n, z ∈ U. (1.2)

We also let S be the subclass of A consisting of functions which are
normalized by f(0) = 0 = f ′(0)− 1 and univalent in U.

Denote by V the subclass of A consisting of functions of the form

f(z) = z +
∞∑
n=2

anz
n, an ≥ 0. (1.3)

For functions f ∈ A and g ∈ A of the form g(z) = z +
∑∞

n=2 bnz
n, the

hadamard product (or convolution) of f and g is given by

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n, z ∈ U. (1.4)

Now, we define the linear operator

I(m, z) : A → A

defined by the hadamard product(or convolution)

I(m, z)f = Φ(m, z) ∗ f(z) = z +

∞∑
n=2

mn−1

(n− 1)!
e−manz

n. (1.5)

where Φ(m, z) is the Poissons distribution series given by (1.1).

We recall the following subclasses introduced by Uralegaddi et al.[14]
(see[4, 6]):

The class M(α) of starlike functions of order 1 < α ≤ 4
3

M(α) :=

{
f ∈ A : <

(
zf ′(z)

f(z)

)
< α, z ∈ U

}
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and the class N (α) of convex functions of order 1 < α ≤ 4
3

N (α) : =

{
f ∈ A : <

(
1 +

zf ′′(z)

f ′(z)

)
< α, z ∈ U

}
=
{
f ∈ A : zf ′ ∈M(α)

}
Also let M∗(α) ≡M(α) ∩ V and N ∗(α) ≡ N (α) ∩ V[14].

In this paper we introduce two new subclasses of S namely M(λ, α)
and N (λ, α) to discuss some inclusion properties.

For some α (1 < α ≤ 4
3) and λ(0 ≤ λ < 1), we let M(λ, α) and

N (λ, α) be two new subclass of S consisting of functions of the form
(1.2) satisfying the analytic criteria

M(λ, α) :=

{
f ∈ S : <

(
zf ′(z)

(1− λ)f(z) + λzf ′(z)

)
< α, z ∈ U

}
. (1.6)

N (λ, α) :=

{
f ∈ S : <

(
f ′(z) + zf ′′(z)

f ′(z) + λzf ′′(z)

)
< α, z ∈ U

}
. (1.7)

We also let M∗(λ, α) ≡M(λ, α) ∩ V and N ∗(λ, α) ≡ N (λ, α) ∩ V.
Note thatM(0, α) =M(α), N (0, α) = N (α);M∗(α) and N ∗(α) the

subclasses of studied by Uralegaddi et al.[14].
Motivated by results on connections between various subclasses of

analytic univalent functions by using hypergeometric functions (see [2,
7, 8, 12, 13]) , we obtain necessary and sufficient condition for func-
tion Φ(m, z) to be in the classes M∗(λ, α) , N ∗(λ, α) and connections
between Rτ (A,B) by applying convolution operator.

2. Coefficient Estimate

To start with we prove the following results.

Theorem 2.1. For some α (1 < α ≤ 4
3) and λ(0 ≤ λ < 1), and if

f ∈ V then f ∈M∗(λ, α) if and only if

∞∑
n=2

[n− (1 + nλ− λ)α]|an| ≤ α− 1. (2.1)

Proof. To show that f ∈M(λ, α) it suffices to prove that∣∣∣∣∣∣
zf ′(z)

(1−λ)f(z)+λzf ′(z) − 1

zf ′(z)
(1−λ)f(z)+λzf ′(z) − (2α− 1)

∣∣∣∣∣∣ ≤ 1. (2.2)
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By (1.2) the inequality (2.2) becomes∣∣∣∣AB − 1

∣∣∣∣ ≤ ∣∣∣∣AB − (2α− 1)

∣∣∣∣ , (2.3)

Since this, the inequality (2.2) we can replace with∣∣∣∣ A−B
A−B(2α− 1)

∣∣∣∣ ≤ 1. (2.4)

where

A = zf ′(z) = z +

∞∑
n=2

nanz
n, an ≥ 0.

B = (1− λ)f(z) + λzf ′(z) = z +

∞∑
n=2

(1 + nλ− λ)anz
n, an ≥ 0.

Now we want to show (2.4). We have∣∣∣∣ A−B
A−B(2α− 1)

∣∣∣∣ =

∣∣∣∣ ∑∞
n=2[n− (1 + nλ− λ)]anz

n

−2(α− 1)z +
∑∞

n=2[n− (2α− 1)(1 + nλ− λ)]anzn

∣∣∣∣
≤

∑∞
n=2[n− (1 + nλ− λ]an

2(α− 1)−
∑∞

n=2[n− (2α− 1)(1 + nλ− λ)]an
.

The last expression is bounded above by 1, if

∞∑
n=2

[n− (1 + nλ− λ)]an ≤ 2(α− 1)−
∞∑
n=2

[n− (2α− 1)(1 + nλ− λ)]an

which is equivalent to

∞∑
n=2

[n− (1 + nλ− λ)α]an ≤ α− 1.

To prove converse, we assume that f ∈ A and in the class M(λ, α) so
the condition (1.6) readily yields

<
(

zf ′(z)

(1− λ)f(z) + λzf ′(z)

)
= <

(
z +

∑∞
n=2 nanz

n

z +
∑∞

n=2(1 + nλ− λ)anzn

)
< α

Choosing values of z on the real axis and upon clearing the denominator
we get the required assertion in (2.1). Thus the proof is complete.
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Theorem 2.2. For some α (1 < α ≤ 4
3) and λ(0 ≤ λ < 1), and if

f ∈ V then f ∈ N ∗(λ, α) if and only if

∞∑
n=2

n[n− (1 + nλ− λ)α]an ≤ α− 1. (2.5)

Proof. It is well known that f ∈M(λ, α) if and only if zf
′ ∈ N (λ, α)

Since zf
′

= z +
∑∞

n=2 nanz
n we may replace an with nan in Theorem

2.1.

Corollary 2.3. For some α (1 < α ≤ 4
3); λ(0 ≤ λ < 1) and f ∈

M∗(λ, α) then

|an| ≤
α− 1

n− (1 + nλ− λ)α
. (2.6)

Corollary 2.4. For some α (1 < α ≤ 4
3); λ(0 ≤ λ < 1) and f ∈

N ∗(λ, α) then

|an| ≤
α− 1

n[n− (1 + nλ− λ)α]
. (2.7)

In the following theorems, we determine necessary and sufficient con-
dition for function Φ(m, z) to be in the classes M∗(λ, α) and N ∗(λ, α).

For convenience throughout in the sequel, we use the following nota-
tions:

∞∑
n=2

mn−1

(n− 1)!
= em − 1 (2.8)

∞∑
n=2

mn−1

(n− 2)!
= mem (2.9)

∞∑
n=2

mn−1

(n− 3)!
= m2em (2.10)

∞∑
n=2

mn−1

(n− 4)!
= m3em. (2.11)

In general we can state

∞∑
n=2

mn−1

(n− j)!
= mj−1em, j ≥ 2. (2.12)
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Theorem 2.5. If m > 0 (m 6= 0,−1,−2, . . . ), then Φ(m, z) ∈
M∗(λ, α) if and only if

(1− λα)m

2em − 1
em ≤ α− 1. (2.13)

Proof. Since

Φ(m, z) = z +

∞∑
n=2

mn−1

(n− 1)!
e−mzn,

by virtue of Theorem 2.1, it suffices to show that
∞∑
n=2

[n− (1 + nλ− λ)α]
mn−1

(n− 1)!
e−m ≤ α− 1.

Now, by writing n = n+ 1− 1 we have

∞∑
n=2

n
mn−1

(n− 1)!
e−m − λα

∞∑
n=2

(n− 1)
mn−1

(n− 1)!
e−m − α

∞∑
n=2

mn−1

(n− 1)!
e−m

=
∞∑
n=2

(n− 1)
mn−1

(n− 1)!
e−m − λα

∞∑
n=2

(n− 1)
mn−1

(n− 1)!
e−m

+ (1− α)

∞∑
n=2

mn−1

(n− 1)!
e−m

≤ (1− λα)
∞∑
n=2

mn−1

(n− 2)!
e−m + (1− α)

∞∑
n=2

mn−1

(n− 1)!
e−m

= (1− λα)m+ (1− α)(1− e−m)

= (1− λα)m− (α− 1)(1− e−m).

But this expression is bounded above by α−1 if and only if (2.13) holds.
Thus the proof is completed.

Theorem 2.6. If m > 0(m 6= 0,−1,−2, . . . ), then Φ(m, z) is in
N ∗(λ, α) if and only if

(1− λα)m2 + (3− 2λα− α)m

2em − 1
em ≤ α− 1. (2.14)

Proof. Let f be of the form (1.2) belong to the class S. By virtue of
Theorem 2.2, it suffices to show that

∞∑
n=2

n[n− (1 + nλ− λ)α]
mn−1

(n− 1)!
e−m ≤ α− 1. (2.15)
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Let

L(λ, α) =
∞∑
n=2

[
(1− λα)n2 − α(1− λ)n

] mn−1

(n− 1)!
e−m.

Writing n = (n− 1) + 1, and n2 = (n− 1)(n− 2) + 3(n− 1) + 1, we can
rewrite the above term as

L(λ, α) = (1− λα)
∞∑
n=2

(n− 1)(n− 2)
mn−1

(n− 1)!
e−m

+ (3− 2λα− α)

∞∑
n=2

(n− 1)
mn−1

(n− 1)!
e−m + (1− α)

∞∑
n=2

mn−1

(n− 1)!
e−m

= (1− λα)
∞∑
n=2

mn−1

(n− 3)!
e−m + (3− 2λα− α)

∞∑
n=2

mn−1

(n− 2)!
e−m

+ (1− α)

∞∑
n=2

mn−1

(n− 1)!
e−m

= (1− λα)m2 + (3− 2λα− α)m+ (1− α)(1− e−m)

= (1− λα)m2 + (3− 2λα− α)m− (α− 1)(1− e−m).

But the last expression is bounded above by α− 1 if and only if (2.15)
holds. Thus the proof is complete.

By taking λ = 0 we state the following corollary,

Corollary 2.7. Let m > 0 (m 6= 0,−1,−2, . . . ). Then the following
are true.

(1) Φ(m, z) ∈M∗(α) if and only if

mem

2em − 1
≤ α− 1.

(2) Φ(m, z) ∈ N ∗(α) if and only if

m2 + (3− α)m

2em − 1
em ≤ α− 1.

3. Inclusion Properties

A function f ∈ A is said to be in the classRτ (A,B), (τ ∈ C\{0}, −1 ≤
B < A ≤ 1), if it satisfies the inequality∣∣∣∣ f ′(z)− 1

(A−B)τ −B[f ′(z)− 1]

∣∣∣∣ < 1 (z ∈ U).
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The class Rτ (A,B) was introduced earlier by Dixit and Pal [5].
It is of interest to note that if

τ = 1, A = β and B = −β (0 < β ≤ 1),

we obtain the class of functions f ∈ A satisfying the inequality∣∣∣∣f ′(z)− 1

f ′(z) + 1

∣∣∣∣ < β (z ∈ U)

which was studied by (among others) Padmanabhan [10] and Caplinger
and Causey [1].

Lemma 3.1. [5] If f ∈ Rτ (A,B) is of form (1.2), then

|an| ≤ (A−B)
|τ |
n
, n ∈ N \ {1}. (3.1)

The result is sharp.

Making use of the Lemma 3.1 we will study the action of the Poissons
distribution series on the class M(λ, α).

Theorem 3.2. Let m > 0(m 6= 0,−1,−2, . . . ). If f ∈ Rτ (A,B),then
I(m, z)f ∈ N ∗(λ, α) if and only if

(A−B)|τ | (1− λα)m

1 + (A−B)|τ |(1− e−m)
≤ α− 1. (3.2)

Proof. Let f be of the form (1.2) belong to the class Rτ (A,B). By
virtue of Theorem 2.2, it suffices to show that

∞∑
n=2

n[n− (1 + nλ− λ)α]
mn−1

(n− 1)!
e−m|an| ≤ α− 1.

Let

L(n,m,α) =

∞∑
n=2

n[n− (1 + nλ− λ)α]
mn−1

(n− 1)!
e−m|an|.

Since f ∈ Rτ (A,B) then by Lemma 3.1 we have

|an| ≤ (A−B)
|τ |
n
.

Hence

L(n,m,α) ≤ (A−B)|τ |
∞∑
n=2

[n− (1 + nλ− λ)α]
mn−1

(n− 1)!
e−m.
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Proceeding as in Theorem 2.5 we get

L(n,m,α) ≤ (A−B)|τ | [(1− λα)m− (α− 1)(1− e−m)].

But this last expression is bounded above by α − 1 if and only if (3.2)
holds.

By taking λ = 0 we state the following:

Corollary 3.3. Letm > 0(m 6= 0,−1,−2, . . . ). If f ∈ Rτ (A,B),then
I(m, z)f ∈ N ∗(α) if and only if

(A−B)|τ | m
1 + (A−B)|τ |(1− e−m)

≤ α− 1.

Theorem 3.4. Let m > 0(m 6= 0,−1,−2, . . . ), then L(m, z) =∫ z
0
I(m,t)
t dt is in N ∗(λ, α) if and only if

(1− λα)m

2em − 1
em ≤ α− 1. (3.3)

Proof. Since

L(m, z) = z +
∞∑
n=2

mn−1

(n− 1)!
e−m

zn

n
.

By virtue of Theorem 2.5, it suffices to show that
∞∑
n=2

n[n− (1 + nλ− λ)α]
mn−1

n(n− 1)!
e−m ≤ α− 1.

Now,
∞∑

n=2

n[n− (1 + nλ− λ)α]
mn−1

n(n− 1)!
e−m =

∞∑
n=2

[n− (1 + nλ− λ)α]
mn−1

(n− 1)!
e−m.

Proceeding as in Theorem 2.5 we get
∞∑
n=2

n[n− (1 + nλ− λ)α]
mn−1

(n− 1)!
e−m = (1− λα)m− (α− 1)(1− e−m),

which is bounded above by α− 1 if and only if (3.3) holds.

By taking λ = 0 we state the following:

Corollary 3.5. Let m > 0(m 6= 0,−1,−2, . . . ), then L(m, z) =∫ z
0
I(m,t)
t dt is in N ∗(α) if and only if

m em

2em − 1
≤ α− 1.
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