DOI QR코드

DOI QR Code

ON A NEW CLASS OF SALAGEAN-TYPE HARMONIC UNIVALENT FUNCTIONS ASSOCIATED WITH SUBORDINATION

  • Received : 2017.11.15
  • Accepted : 2018.06.02
  • Published : 2018.09.25

Abstract

In this present investigation, we introduce a new class of harmonic univalent functions of the form $f=h+{\bar{g}}$ in the open unit disk ${\Delta}$. We get basic properties, like, necessary and sufficient convolution conditions, distortion bounds, compactness and extreme points for these classes of functions.

Keywords

References

  1. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25. https://doi.org/10.5186/aasfm.1984.0905
  2. J. Dziok, Classes of harmonic functions defined by subordination, Abstr. Appl. Anal. 2015 (2015), 1-9.
  3. J. Dziok, On Janowski harmonic functions, J. Appl. Anal. 21 (2015), 99-107.
  4. J. Dziok, J. M. Jahangiri and H. Silverman, Harmonic functions with varying coefficients, Journal of Inequalities and Applications 139 (2016) 1-12,
  5. J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235 (1999), 470-477. https://doi.org/10.1006/jmaa.1999.6377
  6. J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Salagean-type har-monic univalent functions, South J. Pure Appl. Math. 2 (2002), 77-82.
  7. J. M. Jahangiri, N. Magesh and C. Murugesan, Certain classes of starlike har-monic functions defined by subordination, Journal of Fractional Calculus and Applications, 8 (2017), 88-100.
  8. G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. Springer- Verlag Heidelberg 1013 (1983), 362-372.
  9. H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220 (1998), 283-289. https://doi.org/10.1006/jmaa.1997.5882
  10. H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions, N. Z. J. Math. 28 (1999), 275-284.