DOI QR코드

DOI QR Code

UNI-SOFT COMMUTATIVE IDEALS WITH THRESHOLDS IN BCK/BCI-ALGEBRAS

  • Received : 2017.10.22
  • Accepted : 2018.07.10
  • Published : 2018.09.25

Abstract

The notion of a uni-soft commutative ideal with thresholds is introduced, and related properties are investigated. Relations between a uni-soft ideal with thresholds and a uni-soft commutative ideal with thresholds are discussed. Conditions for a uni-soft ideal with thresholds to be a uni-soft commutative ideal with the same thresholds are provided. Characterizations of a uni-soft commutative ideal with thresholds are established.

Keywords

References

  1. U. Acar, F. Koyuncu and B. Tanay, Soft sets and soft rings, Comput. Math. Appl. 59 (2010) 3458-3463. https://doi.org/10.1016/j.camwa.2010.03.034
  2. H. Aktas and N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726-2735. https://doi.org/10.1016/j.ins.2006.12.008
  3. A. O. Atagun and A. Sezgin, Soft substructures of rings, fields and modules, Comput. Math. Appl. 61 (2011) 592-601. https://doi.org/10.1016/j.camwa.2010.12.005
  4. N. Cagman, F. Citak and S. Enginoglu, Soft set theory and uni-int decision making, Eur. J. Oper. Res. 207 (2010) 848-855. https://doi.org/10.1016/j.ejor.2010.05.004
  5. D. Chen, E. C. C. Tsang, D. S. Yeung and X. Wang, The parametrization reduction of soft sets and its applications, Comput. Math. Appl. 49 (2005) 757-763. https://doi.org/10.1016/j.camwa.2004.10.036
  6. F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008) 2621-2628. https://doi.org/10.1016/j.camwa.2008.05.011
  7. Y. Huang, BCI-algebra, Science Press, Beijing 2006.
  8. Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl. 56 (2008) 1408-1413. https://doi.org/10.1016/j.camwa.2008.02.035
  9. Y. B. Jun, union-soft sets with applications in BCK/BCI-algebras, Bull. Korean Math. Soc. 50 (2013), no. 6, 1937-1956. https://doi.org/10.4134/BKMS.2013.50.6.1937
  10. Y. B. Jun, K. Hur and K. J. Lee, A novel generalization of uni-soft subalgebras and ideals in BCK/BCI-algebras, Annal. Fuzzy Math. Inform. (submitted).
  11. Y. B. Jun, H. S. Kim and J. Neggers, Pseudo d-algebras, Inform. Sci. 179 (2009) 1751-1759. https://doi.org/10.1016/j.ins.2009.01.021
  12. Y. B. Jun, K. J. Lee and A. Khan, Soft ordered semigroups, Math. Logic Q. 56 (2010) 42-50. https://doi.org/10.1002/malq.200810030
  13. Y. B. Jun, K. J. Lee and C. H. Park, Soft set theory applied to ideals in d-algebras, Comput. Math. Appl. 57 (2009) 367-378. https://doi.org/10.1016/j.camwa.2008.11.002
  14. Y. B. Jun, K. J. Lee and J. Zhan, Soft p-ideals of soft BCI-algebras, Comput. Math. Appl. 58 (2009) 2060-2068. https://doi.org/10.1016/j.camwa.2009.07.072
  15. Y. B. Jun and C. H. Park, Applications of soft sets in ideal theory of BCK/BCIalgebras, Inform. Sci. 178 (2008) 2466-2475.
  16. P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6
  17. P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. 44 (2002) 1077-1083. https://doi.org/10.1016/S0898-1221(02)00216-X
  18. J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co. Seoul 1994.
  19. D. Molodtsov, Soft set theory - First results, Comput. Math. Appl. 37 (1999) 19-31.
  20. C. H. Park, Y. B. Jun and M. A. Ozturk, Soft WS-algebras, Commun. Korean Math. Soc. 23 (2008) 313-324. https://doi.org/10.4134/CKMS.2008.23.3.313
  21. J. Zhan and Y. B. Jun, Soft BL-algebras based on fuzzy sets, Comput. Math. Appl. 59 (2010) 2037-2046. https://doi.org/10.1016/j.camwa.2009.12.008