DOI QR코드

DOI QR Code

Anti-inflammatory Potential of Artemisia capillaris and Its Constituents in LPS-induced RAW264.7 Cells

  • Abdul, Qudeer Ahmed (Department of Food and Life Science, Pukyong National University) ;
  • Seong, Su Hui (Department of Food and Life Science, Pukyong National University) ;
  • Ahn, Bo Ra (Department of Food and Life Science, Pukyong National University) ;
  • Islam, Md Nurul (Department of Pharmacy, Mawlana Bhashani Science and Technology University) ;
  • Jung, Hyun Ah (Department of Food Science and Human Nutrition, Chonbuk National University) ;
  • Choi, Jae Sue (Department of Food and Life Science, Pukyong National University)
  • Received : 2018.03.09
  • Accepted : 2018.04.13
  • Published : 2018.09.30

Abstract

Artemisia capillaris has been widely used as an alternative therapy for treating obesity and atopic dermatitis. It has been used as a hepatoprotactant. It is also used for ameliorating inflammatory reactions. Although there are several investigations on other Artemisia species, there is no systematic study describing the role of A. capillaris MeOH extract, its solvent soluble fractions, or derived anti-inflammatory principal components in regulating inflammatory conditions. Therefore, the objective of this study was to elucidate anti-inflammatory mechanisms of A. capillaris. Results revealed that MeOH extract of A. capillaris could decrease LPS-stimulated NO secretion. Of tested fractions, $CH_2Cl_2$, EtOAc, and n-BuOH strongly inhibited NO release from RAW264.7 cells. Bioactive mediators derived from $CH_2Cl_2$ and n-BuOH fractions elicited potent anti-inflammatory actions and strikingly abrogated LPS-triggered NO accumulation in RAW264.7 cells. Of particular interest, capillin and isoscopoletin possessed the most potent NO suppressive effects. Western blot analysis validated the molecular mechanism of NO inhibition and showed that capillin and isoscopoletin significantly down-regulated iNOS and COX-2 protein expression. Taken together, our results provide the first evidence that MeOH extract, $CH_2Cl_2$, EtOAc, and n-BuOH fractions from A. capillaris and its derived lead candidates can potently suppress inflammatory responses in macrophages by hampering NO release and down-regulating iNOS and COX-2 signaling.

Keywords

References

  1. Murakami, M.; Hirano, T. Front. Immunol. 2012, 3, 1-2.
  2. Sharma, J. N.; Al-Omran, A.; Parvathy, S. S. Inflammopharmacology 2007, 15, 252-259. https://doi.org/10.1007/s10787-007-0013-x
  3. Bognar, E.; Sarszegi, Z.; Szabo, A.; Debreceni, B.; Kalman, N.; Tucsek, Z.; Sumegi, B.; Gallyas, F. Jr. PLoS One 2013, 8, e65355. https://doi.org/10.1371/journal.pone.0065355
  4. Rhule, A.; Navarro, S.; Smith, J. R.; Shepherd, D. M. J. Ethnopharmacol. 2006, 106, 121-128. https://doi.org/10.1016/j.jep.2005.12.012
  5. Tang, W.; Eisenbrand, G. Chinese drugs of plant origin, chemistry, phamacology and use in traditional and modern medicine: Springer Verlag, New York, 1992, p 179.
  6. Hong, J. H.; Lee, J. W.; Park, J. H.; Lee, I. S. Biofactors 2007, 31, 43-53. https://doi.org/10.1002/biof.5520310105
  7. Seo, K. S.; Yun, K. W. Korean J. Plant Res. 2008, 21, 292-298.
  8. Lee, C. J.; Kim, H. Y.; Kim, J. D.; Kim, C. H. J. Korean Orient. Med. 2000, 21, 100-107.
  9. Choi, J. H.; Kim, D. W.; Yun, N.; Choi, J. S.; Islam, M. N.; Kim, Y. S.; Lee, S. M. J. Nat. Prod. 2011, 74, 1055-1060. https://doi.org/10.1021/np200001x
  10. Seo, K. S.; Jeong, H. J.; Yun, K. W. J. Ecol. Field Biol. 2010, 33, 141-147.
  11. Cha, J. D.; Moon, S. E.; Kim, H. Y.; Cha, I. H.; Lee, K. Y. J. Food Sci. 2009, 74, 75-81. https://doi.org/10.1111/j.1750-3841.2009.01355.x
  12. Hong, J. H.; Lee, I. S. Biofactors 2009, 35, 380-388. https://doi.org/10.1002/biof.35
  13. Okuno, I.; Uchida, K.; Kadowaki, M.; Akahori, A. Jpn. J. Pharmacol. 1981, 31, 835-838. https://doi.org/10.1254/jjp.31.835
  14. Jung, H. A.; Park, J. J.; Islam, M. N.; Jin, S. E.; Min, B. S.; Lee, J. H.; Sohn, H. S.; Choi, J. S. Arch. Pharm. Res. 2012, 35, 1021-1035. https://doi.org/10.1007/s12272-012-0610-0
  15. Kwon, O. S.; Choi, J. S.; Islam, M. N.; Kim, Y. S.; Kim, H. P. Arch. Pharm. Res. 2011, 34, 1561-1569. https://doi.org/10.1007/s12272-011-0919-0
  16. Nurul Islam, M.; Jung, H. A.; Sohn, H. S.; Kim, H. M.; Choi, J. S. Arch. Pharm. Res. 2013, 36, 542-552. https://doi.org/10.1007/s12272-013-0069-7
  17. Pautz, A.; Art, J.; Hahn, S.; Nowag, S.; Voss, C.; Kleinert, H. Nitric Oxide 2010, 23, 75-93. https://doi.org/10.1016/j.niox.2010.04.007
  18. Ribiere, C.; Jaubert, A. M.; Gaudiot, N.; Sabourault, D.; Marcus, M. L.; Boucher, J. L.; Denis-Henriot, D.; Giudicelli, Y. Biochem. Biophys. Res. Commun. 1996, 222, 706-712. https://doi.org/10.1006/bbrc.1996.0824
  19. Mitrovic, B.; Ignarro, L. J.; Montestruque, S.; Smoll, A.; Merrill, J. E. Neuroscience 1994, 61, 575-585. https://doi.org/10.1016/0306-4522(94)90435-9
  20. Kawachi, H.; Moriya, N. H.; Korai, T.; Tanaka, S. Y.; Watanabe, M.; Matsui, T.; Kawada, T.; Yano, H. Mol. Cell. Biochem. 2007, 300, 61- 67. https://doi.org/10.1007/s11010-006-9369-2
  21. Rayburn, E. R.; Ezell, S. J.; Zhang, R. Mol. Cell Pharmacol. 2009, 1, 29-43. https://doi.org/10.4255/mcpharmacol.09.05
  22. Mulabagal, V.; Alexander-Lindo, R. L.; Dewitt, D. L.; Nair, M. G. Evid. Based Complement. Alternat. Med. 2011, 11, 1-6. https://doi.org/10.1186/1472-6882-11-1
  23. Yan, Y.; Li, J.; Ouyang, W.; Ma, Q.; Hu, Y.; Zhang, D.; Ding, J.; Qu, Q.; Subbaramaiah, K.; Huang, C. J. Cell Sci. 2006, 119, 2985-2994. https://doi.org/10.1242/jcs.03014
  24. Turini, M. E.; DuBois, R. N. Annu. Rev. Med. 2002, 53, 35-57. https://doi.org/10.1146/annurev.med.53.082901.103952
  25. Burk, D. R.; Cichacz, Z. A.; Daskalova, S. M. J. Med. Plant. Res. 2010, 4, 225-234.
  26. Valles, J.; Torrell, M.; Garnatje, T.; Garcia-Jacas, N.; Vilatersana, R.; Susanna, A. Plant Biol. 2003, 5, 274-284. https://doi.org/10.1055/s-2003-40790
  27. Lim, H. K.; Cho, S. K.; Park, S.; Cho, M. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 275-282. https://doi.org/10.3839/jksabc.2010.043
  28. Jang, M.; Jeong, S. W.; Kim, B. K.; Kim, J. C. BioMed. Res. Int. 2015, 2015, 872718.
  29. Ali, M. Y.; Jannat, S.; Jung, H. A.; Choi, R. J.; Roy, A.; Choi, J. S. Asian Pac. J. Trop. Med. 2016, 9, 103-111. https://doi.org/10.1016/j.apjtm.2016.01.014
  30. Han, J.; Zhao, Y. L.; Shan, L. M.; Huang, F. J.; Xiao, X. H. Chin. J. Integr. Med. 2005, 11, 54-56. https://doi.org/10.1007/BF02835751
  31. Kim, E. K.; Kwon, K. B.; Han, M. J.; Song, M. Y.; Lee, J. H.; Lv, N.; Choi, K. B.; Ryu, D. G.; Kim, K. S.; Park, J. W.; Park, B. H. Int. J Mol. Med. 2007, 19, 535-540.
  32. Kim, Y. S.; Bahn, K. N.; Hah, C. K.; Gang, H. I.; Ha, Y. L. J. Food Sci. 2008, 73, 16-20.
  33. Janbaz, K. H.; Gilani, A. H. J. Ethnopharmacol. 1995, 47, 43-47. https://doi.org/10.1016/0378-8741(95)01252-9
  34. Benli, M.; Kaya, I.; Yigit, N. Cell Biochem. Funct. 2007, 25, 681- 686. https://doi.org/10.1002/cbf.1373
  35. Shahriyary, L.; Yazdanparast, R. J. Ethnopharmacol. 2007, 114, 194-198. https://doi.org/10.1016/j.jep.2007.07.029
  36. Aniya, Y.; Shimabukuro, M.; Shimoji, M.; Kohatsu, M.; Gyamfi, M. A.; Miyagi, C.; Kunii, D.; Takayama, F.; Egashira, T. Biol. Pharm. Bull. 2000, 23, 309-312. https://doi.org/10.1248/bpb.23.309
  37. Zhang, Z.; Guo, S. S.; Zhang, W. J.; Geng, Z. F.; Liang, J. Y.; Du, S. S.; Wang, C. F.; Deng, Z. W. Ind. Crops Prod. 2017, 100, 132-137. https://doi.org/10.1016/j.indcrop.2017.02.020
  38. Islam, M. N.; Choi, R. J.; Jung, H. A.; Oh, S. H.; Choi, J. S. Arch. Pharm. Res. 2016, 39, 340-349. https://doi.org/10.1007/s12272-016-0715-y
  39. Tanaka, K. Seikagaku 1961, 33, 399-409.
  40. Masuda, Y.; Asada, K.; Satoh, R.; Takada, K.; Kitajima, J. Phytomedicine 2015, 22, 545-552. https://doi.org/10.1016/j.phymed.2015.03.008
  41. Jihed, B.; Bhouri, W.; Ben Sghaier, M.; Bouhlel, I.; Kriffi, M.; Skandrani, I.; Dijoux, F. M.; Ghedira, K.; Chekir-Ghedira, L. Nutr. Cancer 2012, 64, 1095-1102. https://doi.org/10.1080/01635581.2012.717680
  42. Kiso, Y.; Ogasawara, S.; Hirota, K.; Watanabe, N.; Oshima, Y.; Konno, C.; Hikino, H. Planta Med. 1984, 50, 81-85. https://doi.org/10.1055/s-2007-969627

Cited by

  1. Effect of germination environment on the biochemical compounds and anti-inflammatory properties of soybean cultivars vol.15, pp.4, 2018, https://doi.org/10.1371/journal.pone.0232159
  2. In Vitro Studies to Assess the α-Glucosidase Inhibitory Activity and Insulin Secretion Effect of Isorhamnetin 3-O-Glucoside and Quercetin 3-O-Glucoside Isolated from Salicornia herbacea vol.9, pp.3, 2018, https://doi.org/10.3390/pr9030483