DOI QR코드

DOI QR Code

Classficiation of Bupleuri Radix according to Geographical Origins using Near Infrared Spectroscopy (NIRS) Combined with Supervised Pattern Recognition

  • Lee, Dong Young (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Kang, Kyo Bin (College of Pharmacy, Sookmyung Women's University) ;
  • Kim, Jina (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University) ;
  • Kim, Hyo Jin (College of Pharmacy, Dongduk Women's University) ;
  • Sung, Sang Hyun (College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University)
  • Received : 2017.12.18
  • Accepted : 2018.04.04
  • Published : 2018.09.30

Abstract

Rapid geographical classification of Bupleuri Radix is important in quality control. In this study, near infrared spectroscopy (NIRS) combined with supervised pattern recognition was attempted to classify Bupleuri Radix according to geographical origins. Three supervised pattern recognitions methods, partial least square discriminant analysis (PLS-DA), quadratic discriminant analysis (QDA) and radial basis function support vector machine (RBF-SVM), were performed to establish the classification models. The QDA and RBF-SVM models were performed based on principal component analysis (PCA). The number of principal components (PCs) was optimized by cross-validation in the model. The results showed that the performance of the QDA model is the optimum among the three models. The optimized QDA model was obtained when 7 PCs were used; the classification rates of the QDA model in the training and test sets are 97.8% and 95.2% respectively. The overall results showed that NIRS combined with supervised pattern recognition could be applied to classify Bupleuri Radix according to geographical origin.

Keywords

References

  1. Ashour, M. L.; Wink, M. J. Pharm. Pharmacol. 2011, 63, 305-321. https://doi.org/10.1111/j.2042-7158.2010.01170.x
  2. Bermejo Benito, P.; Abad Martinez, M. J.; Silvan Sen, A. M.; Sanz Gomez, A.; Fernandez Matellano, L.; Sanchez Contreras, S.; Diaz Lanza, A. M. Life Sci. 1998, 63, 1147-1156. https://doi.org/10.1016/S0024-3205(98)00376-2
  3. Cheng, X. Q.; Li, H.; Yue, X. L.; Xie, J. Y.; Zhang, Y. Y.; Di, H. Y.; Chen, D. F. J. Ethnopharmacol. 2010, 130, 363-368. https://doi.org/10.1016/j.jep.2010.05.019
  4. Sun, X. B.; Matsumoto, T.; Yamada, H. J. Pharm. Pharmacol. 1991, 43, 699-704. https://doi.org/10.1111/j.2042-7158.1991.tb03461.x
  5. Wen, S.; Huifu, X.; Hao, H. Immunopharmacol. Immunotoxicol. 2011, 33, 433-437. https://doi.org/10.3109/08923973.2010.527985
  6. Zhu, L.; Liang, Z. T.; Yi, T.; Ma, Y.; Zhao, Z. Z.; Guo, B. L.; Zhang, J. Y.; Chen, H. B. BMC Complement. Altern. Med. 2017, 17, 305-316. https://doi.org/10.1186/s12906-017-1816-y
  7. Li, X.; Jia, Y.; Song, A.; Chen, X.; Bi, K. Yakugaku Zasshi 2005, 125, 815-819. https://doi.org/10.1248/yakushi.125.815
  8. Bao, Y.; Li, C.; Shen, H.; Nan, F. Anal. Chem. 2004, 76, 4208-4216. https://doi.org/10.1021/ac0499423
  9. Liau, B. C.; Hsiao, S. S.; Lee, M. R.; Jong, T. T.; Chiang, S. T. J. Pharm. Biomed. Anal. 2007, 43, 1174-1178. https://doi.org/10.1016/j.jpba.2006.10.002
  10. Lee, J.; Yang, D. H.; Suh, J. H.; Kim, U.; Eom, H. Y.; Kim, J.; Lee, M. Y.; Kim, J.; Han, S. B. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2011, 879, 3887-3895. https://doi.org/10.1016/j.jchromb.2011.10.040
  11. Huang, H. Q.; Su, J.; Zhang, X.; Shan, L.; Zhang, W. D. J. Chromatogr. A. 2011, 1218, 1131-1138. https://doi.org/10.1016/j.chroma.2010.12.007
  12. Tian, R. T.; Xie, P. S.; Liu, H. P. J. Chromatogr. A. 2009, 1216, 2150-2155. https://doi.org/10.1016/j.chroma.2008.10.127
  13. Qin, X.; Dai, Y.; Liu, N. Q.; Li, Z.; Liu, X.; Hu, J.; Choi, Y. H.; Verpoorte. R. Planta Med. 2012, 78, 926-933. https://doi.org/10.1055/s-0031-1298496
  14. Lin, X.; Xue, L.; Zhang, H.; Zhu, C. Anal. Bioanal. Chem. 2005, 382, 1610-1615. https://doi.org/10.1007/s00216-005-3371-5
  15. Gong, F.; Wang, B. T.; Chau, F. T.; Liang, Y. Z. Anal. Lett. 2005, 38, 2475-2492. https://doi.org/10.1080/00032710500318338
  16. McGoverin, C. M.; Weeranantanaphan, J.; Downey, G.; Manley, M. J. Near Infrared Spec. 2010, 18, 87-111. https://doi.org/10.1255/jnirs.874
  17. Chen, Y.; Xie, M. Y.; Yan, Y.; Zhu, S. B.; Nie, S. P.; Li, C.; Wang, Y. X.; Gong, X. F. Anal. Chim. Acta 2008, 618, 121-130. https://doi.org/10.1016/j.aca.2008.04.055
  18. Luo, X. F.; Yu, X.;Wu, X. M.;Cheng, H. B.;Qu, H. B. Microchem. J. 2008, 90, 8-12. https://doi.org/10.1016/j.microc.2008.02.005
  19. Wang, L.; Lee, F. S. C.; Wang, X. LWT-Food Sci. Technol. 2007, 40, 83-88. https://doi.org/10.1016/j.lwt.2005.08.011
  20. Chen, Q.; Zhao, J.; Lin, H. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2009, 72, 845-850. https://doi.org/10.1016/j.saa.2008.12.002
  21. Lin, H.; Zhao, J.; Chen, Q.; Zhou, F.; Sun, L. Spectrochim Acta. A. Mol. Biomol. Spectrosc. 2011, 79, 1381-1385. https://doi.org/10.1016/j.saa.2011.04.072
  22. Lee, D. Y.; Kim, S. H.; Kim, Y. C.; Kim, H. J.; Sung S. H. Microchem. J. 2011, 99, 213-217. https://doi.org/10.1016/j.microc.2011.05.008
  23. Berrueta, L. A.; Alonso-Salces, R. M.; Heberger, K.; J. Chromatogr. A. 2007, 1158, 196-214. https://doi.org/10.1016/j.chroma.2007.05.024
  24. Li, B.; Wei, Y.; Duan, H.; Xi, L.; Wu, X. Vib. Spectrosc. 2012, 62, 17-22. https://doi.org/10.1016/j.vibspec.2012.05.001
  25. Chiang, L. H.; Russell, E. L.; Braatz, R. D. Chemometrics Intell. Lab. Syst. 2000, 50, 243-252. https://doi.org/10.1016/S0169-7439(99)00061-1
  26. Jiang, H.; Liu, G. H.; Xiao, X.; Yu, S.; Mei, C.; Ding, Y. Food Anal. Methods 2012, 5, 928-934. https://doi.org/10.1007/s12161-011-9331-0
  27. Luts, J.; Ojeda, F.; Van de Plas, R.; De Moor, B.; Van Huffel, S.; Suykens, J. A. Anal. Chim. Acta 2010, 665, 129-145 https://doi.org/10.1016/j.aca.2010.03.030
  28. Ballabio, D.; Consonni, V. Anal. Methods 2013, 5, 3790-3798. https://doi.org/10.1039/c3ay40582f
  29. Rubin, T. N.; Chambers, A.; Smyth, P.; Steyvers, M. Mach. Learn. 2012, 88, 157-208. https://doi.org/10.1007/s10994-011-5272-5

Cited by

  1. Biosynthesis of precious metabolites in callus cultures of Eclipta alba vol.135, pp.2, 2018, https://doi.org/10.1007/s11240-018-1463-0
  2. Assessing Geographical Origin of Gentiana Rigescens Using Untargeted Chromatographic Fingerprint, Data Fusion and Chemometrics vol.24, pp.14, 2018, https://doi.org/10.3390/molecules24142562