왼쪽 유방암 세기변조방사선 치료시 Skin Flash 적용에 대한 유용성 평가

Evaluating efficiency of application the skin flash for left breast IMRT.

  • 임경달 (서울대학교병원 방사선종양학과) ;
  • 서석진 (서울대학교병원 방사선종양학과) ;
  • 이제희 (서울대학교병원 방사선종양학과)
  • Lim, Kyoung Dal (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Seo, Seok Jin (Department of Radiation Oncology, Seoul National University Hospital) ;
  • Lee, Je Hee (Department of Radiation Oncology, Seoul National University Hospital)
  • 발행 : 2018.12.29

초록

목 적 : 왼쪽 유방암 세기변조방사선 치료 시 Skin flash를 적용함에 있어 치료계획의 변화를 알아보고, 적용하지 않았을 경우와 적용 했을 시 피부선량의 변화를 비교해 보고자 하였다. 또한 Skin flash를 다양한 두께별로 적용하여 두께별 피부선량의 변화를 비교, 분석해 보고, 적절한 Skin flash의 적용에 대해 알아보고자 한다. 대상 및 방법 : 실험대상은 Anthropomorphic phantom을 이용하였고, 치료계획을 위한 영상획득은 전산화 단층촬영(CT)으로 하였다. 전산화치료계획은 Eclipse(ver 13.7.16, Varian, USA)의 RTP 시스템을 이용하여 2 field hybrid IMRT와 6 field static IMRT의 두 가지 치료계획을 하였다. 위의 치료계획을 바탕으로 각 치료계획마다 Skin flash 두께를 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, 2.5 cm으로 변경하여 추가치료계획을 수립하였고, 추가치료계획에 대해 총 MU값과 최대선량의 변화를 알아보았다. 치료 장비는 $VitalBeam^{TM}$(Varian Medical System, USA)의 6 MV를 이용하였다. 측정 장비는 MOSFET(metal oxide semiconductor field-effect transistor)을 이용하였고, 측정지점은 phantom의 왼쪽 유방의 센터를 기준으로 위(1번), 중간(2번), 아래(3번) 세 부위에 위치시켜 피부선량을 측정하였다. 그리고 인위적으로 좌표를 0.5cm 내측(medial), 외측(lateral)으로 이동시켜 피부선량의 변화를 비교 분석하였다. 결 과 : Skin flash를 적용하지 않은 치료계획 2F-hIMRT, 6F-sIMRT의 측정값을 기준선량으로 하였다. 2F-hIMRT의 1번 측정점 206.7 cGy, 2번 186.7 cGy, 3번 222 cGy였고, 6F-sIMRT의 기준값은 1번 192 cGy, 2번 213 cGy, 3번 215 cGy로 측정되었다. 이 기준값들과 비교하여 2F-hIMRT에서 1번 측정점은 Skin flash 2.0 cm, 2.5 cm 적용시 평균 261.3 cGy로 26.1 %diff로 가장 많은 선량차를 보였고, 2번 측정점은 Skin flash 2.0 cm일 때 평균 197.3 cGy, 5.6 %diff의 선량차가 났고, 3번 측정점은 Skin flash 2.5 cm일 때 최대 245.3 cGy, 10.5 %diff였다. 6F-sIMRT에서는 1번 측정지점이 Skin flash 2.0 cm 적용시에 216.3 cGy, 12.7 %diff로 가장 큰 선량차이를 보였고 측정지점별로 Skin flash 2.5 cm 적용시가 아닌 2.0 cm 적용시 선량차가 가장 크게 나타났다. 2F-hIMRT, 6F-sIMRT에서 각각 내측 0.5 cm 이동 후 Skin flash를 사용하지 않았을 때 측정치는 2F는 기준값과 비교시 1번, 3번 측정지점에서 -75.2 %diff, -70.1 %diff 차이였고, 6F는 1번, 2번, 3번 측정 지점에서 -14.8, -12.5, -21.0 %diff로 처방선량에 미치지 못하는 저선량이 측정되었다. 두 치료계획 모두 Skin flash 두께가 커질수록 총 MU와 최대선량이 증가하는 것으로 나타났고, 몇몇 결과를 제외하면 전체적으로 %diff도 증가했다. 모든 조건에서 0.5 cm의 Skin flash 두께 사용이 기준값의 피부선량과 약 20 % 이하의 차이로 가장 적은 것으로 나타났다. 결 론 : 결과에 따라 Skin flash의 두께를 0.5 cm으로 최소화 하는 것이 최대선량이나 MU의 증가를 최소화할 수 있었고, 기준이 되는 치료계획과도 가장 적은 피부선량차이를 보였기에 0.5 cm으로 최소화 하여 적용하는 것이 가장 이상적이라 할 수 있을 것이다. 또한 Skin flash 두께를 무한정 크게 한다고 해서 MU나 최대선량, 피부선량차가 증가하지 않고 수렴한다는 것을 알 수 있었다. 그러므로 유방암 환자의 호흡에 의한 PTV의 변화와 여러 오차의 인자들을 고려한다면 0.5~1.0 cm Skin flash 범위에서 Skin flash를 사용한다면 적용하지 않는 것보다는 더 많은 이점이 있을 것으로 사료된다.

Purpose : The purpose of this study is investigating the changes of treatment plan and comparing skin dose with or without the skin flash. To investigate optimal applications of the skin flash, the changes of skin dose of each plans by various thicknesses of skin flash were measured and analyzed also. Methods and Material : Anthropomorphic phantom was scanned by CT for this study. The 2 fields hybrid IMRT and the 6 fields static IMRT were generated from the Eclipse (ver. 13.7.16, Varian, USA) RTP system. Additional plans were generated from each IMRT plans by changing skin flash thickness to 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm and 2.5 cm. MU and maximum doses were measured also. The treatment equipment was 6MV of VitalBeam (Varian Medical System, USA). Measuring device was a metal oxide semiconductor field-effect transistor(MOSFET). Measuring points of skin doses are upper (1), middle (2) and lower (3) positions from center of the left breast of the phantom. Other points of skin doses, artificially moved to medial and lateral sides by 0.5 cm, were also measured. Results : The reference value of 2F-hIMRT was 206.7 cGy at 1, 186.7 cGy at 2, and 222 cGy at 3, and reference values of 6F-sIMRT were measured at 192 cGy at 1, 213 cGy at 2, and 215 cGy at 3. In comparison with these reference values, the first measurement point in 2F-hIMRT was 261.3 cGy with a skin flash 2.0 cm and 2.5 cm, and the highest dose difference was 26.1 %diff. and 5.6 %diff, respectively. The third measurement point was 245.3 cGy and 10.5 %diff at the skin flash 2.5 cm. In the 6F-sIMRT, the highest dose difference was observed at 216.3 cGy and 12.7 %diff. when applying the skin flash 2.0 cm for the first measurement point and the dose difference was the largest at the application point of 2.0 cm, not the skin flash 2.5 cm for each measurement point. In cases of medial 0.5 cm shift points of 2F-hIMRT and 6F-sIMRT without skin flash, the measured value was -75.2 %diff. and -70.1 %diff. at 2F, At -14.8, -12.5, and -21.0 %diff. at the 1st, 2nd and 3rd measurement points, respectively. Generally, both treatment plans showed an increase in total MU, maximum dose and %diff as skin flash thickness increased, except for some results. The difference of skin dose using 0.5 cm thickness of skin flash was lowest lesser than 20 % in every conditions. Conclusion : Minimizing the thickness of skin flash by 0.5 cm is considered most ideal because it makes it possible to keep down MUs and lowering maximum doses. In addition, It was found that MUs, maximum doses and differences of skin doses did not increase infinitely as skin flash thickness increase by. If the error margin caused by PTV or other factors is lesser than 1.0 cm, It is considered that there will be many advantages in with the skin flash technique comparing without it.

키워드

참고문헌

  1. Ghoncheh M, Pournamdar Z, Salehiniya H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev. 2016;17:43-46
  2. Liljegren G, Holmberg L, Adami HO, Westman G, GraffmanS, Bergh J. Sector resection with or without postoperativeradiotherapy for stage I breast cancer: five-year resultsof a randomized trial. Uppsala-Orebro Breast Cancer StudyGroup. J Natl Cancer Inst 1994;86:717-22 https://doi.org/10.1093/jnci/86.9.717
  3. Whelan T, Clark R, Roberts R, Levine M, Foster G. Ipsilateralbreast tumor recurrence postlumpectomy is predictive ofsubsequent mortality: results from a randomized trial. Investigatorsof the Ontario Clinical Oncology Group. Int JRadiat Oncol Biol Phys 1994;30:11-6 https://doi.org/10.1016/0360-3016(94)90513-4
  4. Clark RM, Whelan T, Levine M, Roberts R, Willan A,McCulloch P, et al. Randomized clinical trial of breast irradiationfollowing lumpectomy and axillary dissection fornode-negative breast cancer: an update. Ontario Clinical OncologyGroup. J Natl Cancer Inst 1996;88:1659-64 https://doi.org/10.1093/jnci/88.22.1659
  5. Forrest AP, Stewart HJ, Everington D, Prescott RJ, McArdleCS, Harnett AN, et al. Randomised controlled trial of conservationtherapy for breast cancer: 6-year analysis of the Scottish trial. Scottish Cancer Trials Breast Group. Lancet1996;348:708-13.10) Nattinger AB, Hoffmann RG, Kneusel RT, Schapira MM. https://doi.org/10.1016/S0140-6736(96)02133-2
  6. Intensity Modulated Radiation Therapy Collaborative Working Group Intensity-modulated radiotherapy current status and issues of interest https://doi.org/10.1016/S0360-3016(01)01749-7
  7. Schubert LK, Gondi V, Sengbusch E, et al. Dosimetric comparison of left-sided whole breast irradiation with 3DCRT, forward-planned IMRT, inverseplanned IMRT, helical tomotherapy and topotherapy. Radiother Oncol 2011; 100: 241-6. [PubMed] https://doi.org/10.1016/j.radonc.2011.01.004
  8. van Asselen B, Raaijmakers CPJ, Hofman P, Lagendijk JJW. An improved breast irradiation technique using three-dimensional geometrical information and intensity modulation. Radiother Oncol 2001; 58: 341-7. [PubMed] https://doi.org/10.1016/S0167-8140(00)00278-4
  9. Jain P, Marchant T, Green M, et al. Inter-fraction motion and dosimetric consequences during breast intensity -modulated radiotherapy (IMRT). Radiother Oncol 2009; 90: 93-8. [PubMed] https://doi.org/10.1016/j.radonc.2008.10.010
  10. Hong J, Hunt M, Chui C, et al. Intensity-modulated tangential beam irradiation of the intact breast. Int J Radiat Oncol Biol Phys 1999; 44: 1155-64. [PubMed] https://doi.org/10.1016/S0360-3016(99)00132-7
  11. Landau D, Adams EJ, Webb S, Ross G. Cardiac avoidance in breast radiotherapy: A comparison of simple shielding techniques with intensity-modulated radiotherapy. Radiother Oncol 2001; 60: 247-55. [PubMed] https://doi.org/10.1016/S0167-8140(01)00374-7
  12. Hybrid IMRT plans concurrently treating conventional and IMRT beams for improved breast irradiation and reduced planning time. Mayo CS1, Urie MM, Fitzgerald TJ. Int J Radiat Oncol Biol Phys. 2005 Mar 1;61(3):922-32 https://doi.org/10.1016/j.ijrobp.2004.10.033
  13. M. Clarke, R. Collins, S. Darby, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: An overview of the randomised trials Lancet, 366 (2005), pp. 2087-2106 https://doi.org/10.1016/S0140-6736(05)67887-7
  14. G. Gyenes, L.E. Rutqvist, A. Liedberg, et al. Longterm cardiac morbidity and mortality in a randomized trial of pre- and postoperative radiation therapy versus surgery alone in primary breast cancer Radiother Oncol, 48 (1998), pp. 185-190 https://doi.org/10.1016/S0167-8140(98)00062-0
  15. L.F. Paszat, W.J. Mackillop, P.A. Groome, et al. Mortality from myocardial infarction following postlumpectomy radiotherapy for breast cancer: A population-based study in Ontario, Canada Int J Radiat Oncol Biol Phys, 43 (1999), pp. 755-762 https://doi.org/10.1016/S0360-3016(98)00412-X
  16. J.A. Van Dongen, H. Bartelink, I.S. Fentiman, et al.Randomized clinical trial to assess the value of breast-conserving therapy in stage I and II breast cancer, EORTC 10801 Trial J Natl Cancer Inst Monogr, 11 (1992), pp. 15-18
  17. Royal College of RadiologistsOn target: ensuring geometric accuracy in radiotherapy (2008), pp. 1-76 View Record in Scopus
  18. T. Gupta, S. Chopra, A. Kadam, et al. Assessment of three-dimensional set-up errors in conventional head and neck radiotherapy using electronic portal imaging device Radiat Oncol, 2 (2007), p. 44, 10.1186/1748-717X-2-44
  19. 이보람(Bo-Ram Lee), 이선영(Sun-Young Lee), 윤명근 (Myong-Geun Yoon). (2013). 유방암 방사선치료 기법에 따른 선량 비교. 방사선기술과학, 36(3): 237-244
  20. ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer.Radiother Oncol. 2015 Jan;114(1):3-10. doi: 10.1016/j.radonc.2014.11.030. Epub 2015 Jan 24