DOI QR코드

DOI QR Code

Overview of Gas Hydrates as a Future Energy Source and Their Physical/Chemical Properties

미래 에너지로서 가스 하이드레이트의 개관 및 물리/화학적 특성

  • 차민준 (강원대학교(춘천) 에너지자원공학전공) ;
  • 민경원 (강원대학교(춘천) 에너지자원공학전공)
  • Received : 2018.12.12
  • Accepted : 2018.12.24
  • Published : 2018.12.31

Abstract

This paper reviews the structures, physical and chemical properties, origins and global distribution, amount of energy resources, production technologies, and environmental impacts of gas hydrates to understand the gas hydrates as future energy sources. Hydrate structures should be studied to clarify the fundamentals of natural gas hydrates, hydrate distributions, and amount of energy sources in hydrates. Phase equilibria, dissociation enthalpy, thermal conductivity, specific heat, thermal diffusivity, and fluid permeability of gas hydrate systems are important parameters for the the efficient recovery of natural gas from hydrate reservoirs. Depressurization, thermal stimulation, inhibitor injection, and chemical exchange methods can be considered as future technologies to recover the energy sources from natural gas hydrates, but so far depressurization is the only method to have been applied in test productions of both onshore and offshore hydrates. Finally, we discuss the hypotheses of environmental impacts of gas hydrates and their contribution to global warming due to hydrate dissociation.

본 논문에서는 미래 에너지로서 가스 하이드레이트를 이해하기 위해, 가스 하이드레이트의 구조, 물리/화학적 특성, 생성 기원과 세계 분포, 매장량과 생산기법, 하이드레이트의 지구환경적 영향에 대해 논의하였다. 하이드레이트의 구조에 대한 명확한 이해는 자연계에 매장된 하이드레이트의 특성 분석, 분포와 매장량 산출에 필수적일 것으로 판단된다. 안정적인 에너지 회수를 위해 고려해야 할 하이드레이트의 물리/화학적 특성으로는 하이드레이트의 상평형, 해리 엔탈피, 열전도도, 비열, 열확산도, 유체투과율 등이 있다. 하이드레이트의 물리/화학적 특성을 고려하여 개발된 생산기법으로는 감압법, 열자극법, 억제제 주입법, 맞교환기법이 있으며, 감압법이 현재까지 해상 및 육상 하이드레이트에 대해 모두 시험생산에 적용된 유일한 기법이다. 또한, 하이드레이트의 해리에 따른 온실가스 배출에 의한 지구환경적 영향의 가능성에 대해서도 고찰하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Bohannon, J., 2008. Weighing the Climate Risks of an Untapped Fossil Fuel. Science, 319, 1753. https://doi.org/10.1126/science.319.5871.1753
  2. Bohrmann, G. and Torres, M.E. 2006. Marine Geochemistry:Gas Hydrates in Marine Sediments. Springer, Berlin, p.481-512.
  3. Boswell, R. and Collett, T.S., 2011. Current Perspectives on Gas Hydrate Resources. Energy Environ Sci., 4, 1206-1215. https://doi.org/10.1039/C0EE00203H
  4. Chong, Z.R., Yang, S.H.B., Babu, P., Linga, P., and Li, X.S. 2016. Review of natural gas hydrates as an energy resources: prospects and challenges. Applied Energy, 162, 1633-1652. https://doi.org/10.1016/j.apenergy.2014.12.061
  5. Claypool, G.W. and Kvenvolden, K.A. 1983. Methane and other hydrocarbon gases in marine sediments: Ann. Rev. Earth Planetary Science, 11, 299-327. https://doi.org/10.1146/annurev.ea.11.050183.001503
  6. Collett, T.S. and Ginsburg, G.D., 1998. Gas hydrates in the messoyakha gas field of the west siberian basin - a re-examination of the geologic evidence. Int. J. Offshore Polar Eng., 8, 22-29.
  7. Daigle, H., Thomas, B., Rowe, H., and Nieto, M. 2014. Nuclear magnetic resonance characterization of shallow marine sediments from the nankai trough, integrated ocean drilling program expedition 333. J. Geophys. Res. B: Solid Earth,119, 2631-2650. https://doi.org/10.1002/2013JB010784
  8. Gil, S.M., Shin, H.J., Lee, S.M., Lim, J.S., and Lee, J., 2017. Numerical analysis of dissociation in gas hydrate experimental production system using depressurization. J. Korean Soc. Miner. Energy Resour. Eng., 54, 233-241. https://doi.org/10.12972/ksmer.2017.54.3.233
  9. Hammerschmidt, E.G., 1934. Formation of gas hydrates in natural gas transmission lines. Ind. Eng. Chem., 26(8), 851-855. https://doi.org/10.1021/ie50296a010
  10. Handa, Y.P. 1986. Compositions, enthalpies of dissociation, and heat capacities in the range 85-270 K for clathrate hydrates of methane, ethane, and propane, and enthalpy of dissociation of isobutane hydrate, as determined by a heat-flow calorimeter. J. Chem. Thermodyn., 18(10), 915-921. https://doi.org/10.1016/0021-9614(86)90149-7
  11. Holder, G.D., Angert, P.F., John, V.T., and Yen, S. 1982. Thermodynamic evaluation of thermal recovery of gas from hydrates in the earth. J. Pet. Technol., 34, 1127-1132. https://doi.org/10.2118/8929-PA
  12. Huh, D.G. and Lee, J.Y., 2017. Overview of Gas Hydrates R&D. J. Korean Soc. Miner. Energy Resour. Eng., 54, 201-214. https://doi.org/10.12972/ksmer.2017.54.2.201
  13. International Energy Agency, 2011. World Energy Outlook Special Report: Are We Entering The Golden Age Of Gas?, WEO2011, Paris, France, p.63-100.
  14. Klauda, J.B. and Sandler, S.I., 2005. Global distribution of methane hydrate in ocean sediment. Energy Fuels, 19, 459-470. https://doi.org/10.1021/ef049798o
  15. Kleinberg, R.L., Flaum, C., Griffin, D.D., Brewer, P.G., Malby, G.E., Peltzer, E.T., and Yesinowski, J.P., 2003. Deep sea NMR: methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stabilitym. J. Geophys. Res., 108(B10), 2508.
  16. Krupiczka, R. 1967. Analysis of thermal conductivity in granular materials. Int. Chem. Eng., 7, 122-144.
  17. Kvamme, B., Kuznetsova, T., and Kivelae, P.H., 2012. Adsorption of water and carbon dioxide on hematite and consequences for possible hydrate formation. Phys. Chem. Chem. Phys., 14, 4410-4424. https://doi.org/10.1039/c2cp23810a
  18. Kvenvolden, K.A., 1988. Methane hydrate - a major reservoir of carbon in the shallow geosphere? Chem. Geol., 71, 41-51. https://doi.org/10.1016/0009-2541(88)90104-0
  19. Kvenvolden, K.A., 1999. Potential effects of gas hydrate on human welfare. Proc. Natl. Acad. Sci., 96, 3420-3426. https://doi.org/10.1073/pnas.96.7.3420
  20. Lee, M.W., 2008. Models for Gas Hydrate-bearing Sediments inferred from Hydraulic Permeability and Elastric Velocities, U.S. Geol. Surv. Sci. Invest. Rep., 2008-5219, Washington D.C., USA, 20p.
  21. Liu, X., and Flemings, P.B., 2007. Dynamic multiphase flow model of hydrate formation in marine sediments. J. Geophys. Res., 112, B03101.
  22. Macdonald, G.J.F.,1990a. The future of methane as an energy resource. Annu. Rev. Energy, 15, 53-83. https://doi.org/10.1146/annurev.eg.15.110190.000413
  23. MacDonald, G.J.F., 1990b. Role of methane clathrates in past and future climates. Clim. Change, 16, 247-281. https://doi.org/10.1007/BF00144504
  24. Makogon, Y.F. 1965. A Gas hydrate formation in the gas saturated layers under low temperature. Gazov. Promst., 5, 14-15.
  25. Makogon, Y.F. 1997. Hydrates of Hydrocarbons, PennWell Publshing Co., Tulsa, OK, 482p.
  26. Makogon, Y.F., Holditch, S.A. and Makogon, T.Y. 2007. Natural Gas Hydrates - A Potential Energy Source for the 21st Century. J. Petrol. Sci. Eng., 56, 14-34. https://doi.org/10.1016/j.petrol.2005.10.009
  27. Mascarelli, A.L., 2009. A Sleeping Giant?, Nat. Rep. Clim. Change, 3, 46-49.
  28. Masui, A., Haneda, H., Ogata, Y., and Aoki, K., 2005. The Effect of Saturation Degree of Methane Hydrate on the Shear Strength of Synthetic Methane Hydrate Sediments. Fifth International Conference on Gas Hydrates, Tapir Acad., Trondheim, 657-663.
  29. Maxwell, J. C. 1954. A Treatise on Electricity and Magnetism, vol. 1, Dover, Mineola, Neywork, 506p.
  30. Milkov, A.V., 2004. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth Sci. Rev., 66, 183-97. https://doi.org/10.1016/j.earscirev.2003.11.002
  31. Oyama, A. and Masutani, S.M., 2017. A review of the methane hydrate program in Japan. Energies, 10, 1447. https://doi.org/10.3390/en10101447
  32. Revil, A. 2000. Thermal conductivity of unconsolidated sediments with geophysical applications. J. Geophys. Res., 105(16), 749-768.
  33. Ruppel, C.D. and Kesslers, J.D., 2017. The interaction of climate change and methane hydrates. Reviews of Geophysics, 55, 126-168. https://doi.org/10.1002/2016RG000534
  34. Ryu, B.J., Collett, T.S., Riedel, M., Kim, G.Y., Chun, J.H., Bahk, J.J., Lee, J.Y., Kim, J.H., and Yoo, D.G., 2013. Scientific results of the second gas hydrate drilling expedition in the ulleung basin (UBGH2). Mar. Petr. Geol., 47, 1-20. https://doi.org/10.1016/j.marpetgeo.2013.07.007
  35. Seol, J. and Lee, H., 2013. Natural gas hydrate as a potential energy resource: from occurrence to production. Korean J. Chem. Eng., 30, 771-786. https://doi.org/10.1007/s11814-013-0033-8
  36. Sloan, E.D., 1998. Gas hydrates: review of physical/chemical properties. Energy and Fuels, 12(2), 191-196. https://doi.org/10.1021/ef970164+
  37. Sloan, E.D., 2003. Fundamental principles and applications of natural gas hydrates. Nature, 426(6964), 353-363. https://doi.org/10.1038/nature02135
  38. Sloan, E.D. and Koh, C.A., 2008. Clathrate Hydrates of Natural Gases (3rd Ed.), Chemical Industries, Florida, 537-628.
  39. Soloviev, V.A., 2002. Global estimation of gas content in submarine gas hydrate accumulations. Russ. Geol. Geophys., 43, 609-624.
  40. Svandal, A., Kvamme, B., Grànàsy, L., Pusztai, T., Buanes, T. and Hove, J., 2006. The phase-field theory applied to $CO_2$ and $CH_4$ hydrate. J. Cryst. Growth, 287, 486-490. https://doi.org/10.1016/j.jcrysgro.2005.11.071
  41. Tomaru, H., Torres, M.E., Matsumoto, R., and Borowski, W.S., 2006. Effect of massive gas hydrate formation on the water isotopic fractionation of the gas hydrate system at hydrate ridge, cascadia margin, offshore oregon. Geochem. Geophys. Ceosys., 7, Q10001.
  42. Trofimuk, A.A., Cherskiy, N.V., and Tsarev, V.P., 1975. The biogenic methane resources in the oceans. Dokl Akad Nauk SSSR, 225, 936-939.
  43. U. S. Energy Information Administration, 2012. Annual Energy Outlook 2012, AEO2012, Washington D.C., USA, 57p.
  44. U. S. Energy Information Administration, 2013. Annual Energy Outlook 2013, AEO2013, Washington D.C., USA, p.55-87.
  45. Vafaei, M.T., Kvamme, B., Chejara, A., and Jemai, K., 2012. Nonequilibrium modeling of hydrate dynamics in reservoir. Energy Fuels, 26, 3564-3576. https://doi.org/10.1021/ef300348r
  46. Waite, W. F., Santamarina, J.C., Cortes, D.D., Dugan, B., Espinoza, D.N., Germaine, J., Jang, J., Jung, J.W., Kneafsey, T.J., Shin, H., Soga, K., Winters, W.J., and Yun, T.S., 2009. Physical properties of hydrate-bearing sediments. Review of Geophysics, 47, RG4003.
  47. Wan, Y., Wu, N., Hu, G., Xin, X., Jin, G., Liu, C., and Chen, Q., 2018. Reservoir Stability in the Process of Natural Gas Hydrate Production by Depressurization in the Shenhu Area of the South China Sea, Natural Gas Industry B. In Press. (https://doi.org/10.1016/j.ngib.2018.11.012)
  48. Whiteman, G., Hope, C., and Wadhams, P.,2013. Climate science: vast costs of arctic change. Nature, 499, 401-403. https://doi.org/10.1038/499401a
  49. Woodside, W. and Messmer, J.H. 1961. Thermal conductivity of porous media. i. unconsolidated sands. J. Appl. Phys., 32, 1688-1699. https://doi.org/10.1063/1.1728419
  50. Youn, Y. and Cha, M., 2018. Guest-dependent structural transition of trimethylamine hydrate. J. Korean Soc. Miner. Energy Resour. Eng., 55, 307-313. https://doi.org/10.32390/ksmer.2018.55.4.307
  51. Yun, T.S., Santamarina, J.C., and Ruppel, C., 2007. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. J. Geophys. Res., 112, B04106.