DOI QR코드

DOI QR Code

Construction of a Genetic Map using the SSR Markers Derived from "Wonwhang" of Pyrus pyrifolia

배 '원황'(Pyrus pyrifolia) 유전체 해독에 기반한 SSR 마커 개발 및 유전자 지도 작성

  • Lee, Ji Yun (Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA) ;
  • Seo, Mi-Suk (Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA) ;
  • Won, So Youn (Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA) ;
  • Lim, Kyoung Ah (Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA) ;
  • Shin, Il Sheob (Postharvest Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Choi, Dongsu (Departments of Biology, Kunsan National University) ;
  • Kim, Jung Sun (Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, RDA)
  • 이지윤 (농촌진흥청 국립농업과학원 농업생명자원부 유전체과) ;
  • 서미숙 (농촌진흥청 국립농업과학원 농업생명자원부 유전체과) ;
  • 원소윤 (농촌진흥청 국립농업과학원 농업생명자원부 유전체과) ;
  • 임경아 (농촌진흥청 국립농업과학원 농업생명자원부 유전체과) ;
  • 신일섭 (농촌진흥청 국립원예특작과학원) ;
  • 최동수 (군산대학교 생물학과) ;
  • 김정선 (농촌진흥청 국립농업과학원 농업생명자원부 유전체과)
  • Received : 2018.09.12
  • Accepted : 2018.11.09
  • Published : 2018.12.01

Abstract

High-density genetic linkage mapping is critical for undertaking marker-assisted selection and confirming quantitative trait loci, as well as helping to build pseudomolecules of genomes. We constructed a genetic map using 94 $F_1$ populations generated from the interspecific cross between Korean cultivar "Wonwhang" (Pyrus pyrifolia, NCBI BioSample SAMN05196235) and European cultivar "Bartlett" (Pyrus communis). We designed a total of 24,267 SSR markers based on the genome sequences of "Wonwhang" for this. To select the markers that are linked to the traits important in pear breeding programs, SSR-containing genomic sequences were subjected to nucleotide sequence homology searches, which resulted in 510 SSR markers with high similarity to genes encoding proteins with putative functions such as transcription factors, resistance proteins, flowering time, and regulatory genes. Of these, 70 markers showed polymorphisms in parents and segregating populations and were used to construct a genetic linkage map, together with the unpublished 579 SNPs obtained from genotyping by sequencing analysis. The genetic linkage map covered 3,784.2 cM and the average distance between adjacent markers was 5.8 cM. Seventy SSR markers were distributed across 17 chromosomes with more than one locus.

본 연구에서는 배 '원황'(Pyrus pyrifolia)의 유전체 정보를 바탕으로, 유용 유전자 관련 SSR 마커를 선발하였고, 선발된 SSR과 SNP 마커를 이용하여 '원황' ${\times}$ 'Bartlett' $F_1$ 교배집단에 대한 유전자 지도를 작성하였다. '원황'의 scaffold에서 제작된 SSR 마커 유래 염기서열들과 NCBI nucleotide DB와 BLASTn 분석하여, 유용한 유전자들과 높은 상동성을 보이는 510개 SSR 마커를 선발하였다. 이들 마커를 사용하여 양친과 F1 집단 94개체의 대립 단편의 증폭 양상을 확인한 결과, 88개 마커들이 헤테로 집단에 맞는 분리비를 보였다. 선발된 88개의 SSR 마커는 GBS 분석을 통해 획득한 579개 SNP 마커와 함께 '원황'의 유전자지도를 작성하였다. 70개의SSR 마커들은 배 염색체 수와 같은 17개의 염색체에 잘 위치하였고, 모든 염색체에 한 개 이상의 마커로 위치하였다. 유전자지도의 총 유전거리는 3784.2cM이고 마커간 평균거리는 5.8cM이었다. 본 연구에서 개발된 SSR 분자마커 및 이를 기반으로 만들어진 유전자지도는 배의 육종 및 유전 연구에 유용한 정보를 제공할 것으로 기대한다.

Keywords

Acknowledgement

Supported by : 국립농업과학원

References

  1. Anderson JA, Churchill G, Autrique J, Tanksley S, Sorrells M. 1993. Optimizing parental selection for genetic linkage maps. Genome 36: 181-186. https://doi.org/10.1139/g93-024
  2. Bell RL. 1991. Pears (Pyrus). Genetic Resources of Temperate Fruit and Nut Crops 290: 657-700.
  3. Chagne D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Knabel M, Saeed M, Montanari S, Kim YK, Nicolini D, Larger S, Stefani E, Allan AC, Bowen J, Harvey I, Johnston J, Malnoy M, Troggio M, Perchepied L, Sawyer G, Wiedow C, Won K, Viola R, Hellens RP, Brewer L, Bus VGM, Schaffer RJ, Gardiner SE, Velasco R. 2014. The draft genome sequence of European pear (Pyrus communis L.'Bartlett'). PLOS ONE 9: e92644. https://doi.org/10.1371/journal.pone.0092644
  4. Chen H, Song Y, Li L-T, Khan MA, Li X-G, Korban SS, Wu J, Zhang S-L. 2015. Construction of a high-density simple sequence repeat consensus genetic map for pear (Pyrus spp.). Plant Mol Biol Rep 33: 316-325. https://doi.org/10.1007/s11105-014-0745-x
  5. Collard B, Jahufer M, Brouwer J, Pang E. 2005. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142: 169-196. https://doi.org/10.1007/s10681-005-1681-5
  6. Dinesh-Kumar S, Tham W-H, Baker BJ. 2000. Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc Natl Acad Sci USA 97: 14789-14794. https://doi.org/10.1073/pnas.97.26.14789
  7. Dolatowski J, Nowosielski J, Podyma W, Szymanska M, Zych M. 2004. Molecular studies on the variability of Polish semi-wild pears (Pyrus) using AFLP. J Fruit Orna Plant Res 12: 331-337.
  8. Fan L, Zhang MY, Liu QZ, Li LT, Song Y, Wang LF, Zhang SL, Wu J. 2013. Transferability of newly developed pear SSR markers to other Rosaceae species. Plant Mol Biol Rep 31: 1271-1282. https://doi.org/10.1007/s11105-013-0586-z
  9. Gomez G, Pallas V. 2001. Identification of an In vitro ribonucleoprotein complex between a viroid RNA and a phloem protein from cucumber plants. Mol Plant Microbe In 14: 910-913. https://doi.org/10.1094/MPMI.2001.14.7.910
  10. Kimura T, Shi YZ, Shoda M, Kotobuki K, Matsuta N, Hayashi T, Ban Y, Yamamoto T. 2002. Identification of Asian pear varieties by SSR analysis. Breed Sci 52: 115-121. https://doi.org/10.1270/jsbbs.52.115
  11. Koressaar T, Remm M. 2007. Enhancements and modifications of primer design program Primer3. Bioinfo Appl Note 23: 1289-1291. https://doi.org/10.1093/bioinformatics/btm091
  12. Monte-Corvo L, Cabrita L, Oliveira C, Leitao J. 2000. Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers. Genet Resour Crop Evol 47: 257-265. https://doi.org/10.1023/A:1008794809807
  13. Oh Y, Kim YK, Kim D. 2015. Current status of knowledge and research perspectives in Korean pear genomics. Plant Breed Biotech 3: 323-332. https://doi.org/10.9787/PBB.2015.3.4.323
  14. Montanari S, Saeed M, Knabel M, Kim YK, Troggio M, Malnoy M, Velasco R, Fontana P, Won KH, Durel CE, Perchepied L, Schaffer R, Wiedow C, Bus V, Brewer L, Gardiner SE, Crowhurst RN, Chagne D. 2013. Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids. PLOS ONE 8: e77022. https://doi.org/10.1371/journal.pone.0077022
  15. Pierantoni L, Cho KH, Shin IS, Chiodini R, Tartarini S, Dondini L, Kang SJ, Sansavini S. 2004. Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109: 1519-1524. https://doi.org/10.1007/s00122-004-1775-9
  16. Takemura Y, Tamura F. 2018a. Draft genome sequence of Taiwanese pear (Pyrus pyrifolia). Data Brief 19: 1871-1873. https://doi.org/10.1016/j.dib.2018.06.056
  17. Takemura Y, Tamura F. 2018b. Draft genome sequence of Japanese pear (Pyrus pyrifolia). Data Brief 19: 2221-2223. https://doi.org/10.1016/j.dib.2018.07.007
  18. Terakami S, Nishitani C, Kunihisa M, Shirasawa K, Sato S, Tabata S, Kurita K, Kanamori H, Katayose Y, Takada N, Saito T, Yamamoto T. 2014. Transcriptome-based single nucleotide polymorphism markers for genome mapping in Japanese pear (Pyrus pyrifolia Nakai). Tree Genet Genomes 10: 853-863. https://doi.org/10.1007/s11295-014-0726-0
  19. Tanksley S, Young N, Paterson A, Bonierbale M. 1989. RFLP mapping in plant breeding: new tools for an old science. Nature Biotech 7: 257-264. https://doi.org/10.1038/nbt0389-257
  20. Watson CJ, Froehlich JE, Josefsson CA, Chapple C, Durst F, Benveniste I, Coolbaugh RC. 2001. Localization of CYP86B1 in the outer envelope of chloroplasts. Plant Cell Physiol 42: 873-878. https://doi.org/10.1093/pcp/pce110
  21. Wu J, Li LT, Li M, Khan MA, Li XG, Chen H, Yin H, Zhang S-L. 2014. High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. J Exp Bot 65: 5771-5781. https://doi.org/10.1093/jxb/eru311
  22. Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio R, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S. 2013. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23: 396-408. https://doi.org/10.1101/gr.144311.112
  23. Yamamoto T, Chevreau E. 2009. Pear genomics. In: Genetics and genomics of rosaceae. Springer, pp. 163-186.
  24. Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N. 2002a. Simple sequence repeats for genetic analysis in pear. Euphytica 124:129-137. https://doi.org/10.1023/A:1015677505602
  25. Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N. 2002b. Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106: 9-18. https://doi.org/10.1007/s00122-002-0966-5
  26. Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T. 2007. Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breeding Sci 57: 321-329. https://doi.org/10.1270/jsbbs.57.321
  27. Yuanwen Teng Y, Tanabe K, Tamura F, Itai A. 2001. Genetic relationships of pear cultivars in Xinjiang, China, as measured by RAPD markers. J Hort Sci Biotech 76: 771-779. https://doi.org/10.1080/14620316.2001.11511444
  28. Yuying S, Yuanwen T, Kenji T. 2006. RAPD analysis for genetic assessment of some cultivars of Pyrus pyrifolia derived from China and Japan. Acta Hort Sinica 33: 621-624.
  29. Zhang R-p, Wu J, Li X-g, Khan MA, Chen H, Korban SS, Zhang S. 2013. An AFLP, SRAP, and SSR genetic linkage map and identification of QTLs for fruit traits in pear (Pyrus L.). Plant Mol Biol Rep 31: 678-687. https://doi.org/10.1007/s11105-012-0544-1
  30. Zhao Y, Hong L, Yinshan G, Zhendong L, Xiuwu G, Kun L. 2013. Genetic linkage maps of pear based on SRAP markers. Pak J Bo 45: 1265-1271.