DOI QR코드

DOI QR Code

Flavonoid Metabolic Engineering for Modification of Flower Color in Chrysanthemum

국화 꽃색 변경을 위한 플라보노이드 대사공학

  • Kim, Da-Hye (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Park, Sangkyu (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Park, Bo-Ra (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lee, Jong-Yeol (National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Lim, Sun-Hyung (National Institute of Agricultural Sciences, Rural Development Administration)
  • 김다혜 (농촌진흥청 국립농업과학원) ;
  • 박상규 (농촌진흥청 국립농업과학원) ;
  • 박보라 (농촌진흥청 국립농업과학원) ;
  • 이종렬 (농촌진흥청 국립농업과학원) ;
  • 임선형 (농촌진흥청 국립농업과학원)
  • Received : 2018.08.20
  • Accepted : 2018.09.17
  • Published : 2018.12.01

Abstract

In ornamental crops, the color and shape of flowers are one of the important traits. Generally, flower colors are determined by accumulating pigments such as carotenoids, flavonoids, and betalains. Among them, flavonoids are responsible for broad ranges of colors. Chrysanthemums are one of the most popular ornamental crops in the world, and there have been many efforts to change their flower color. In chrysanthemum flowers, cyanidin-based anthocyanin confers pink or red color, whereas terpenoid-based carotenoids are mainly responsible for yellow and green colors. However, blue colored chrysanthemums do not occur in nature. To date, there have been attempts to obtain blue or violet-colored chrysanthemum flowers through the introduction of a novel gene for accumulating delphinidin-based anthocyanins, while other studies have reported changing endogenous metabolites through the reconstruction of flavonoid biosynthesis. Since various transcription factors are involved in the regulation of flavonoid biosynthesis, it is important to understand not only the structural genes, but also the transcription factors required for the modification of flavonoid-based flower color. Therefore, in this paper, we describe the flavonoid biosynthetic pathway and its regulation, and review previous studies on the change in flower color through modification of flavonoid biosynthesis. This effort could be an important milestone in successfully achieving the modification of chrysanthemum flower color by means of plant biotechnology.

관상용 화훼작물에 있어서 꽃의 색깔과 형태는 중요한 형질 중 하나이다. 일반적으로 꽃색은 카로티노이드, 플라보노이드, 베타라인에 의해 결정된다. 그 중 플라보노이드는 보다 넓은 영역의 색을 나타낸다. 국화는 세계적으로 인기가 많은 관상용 화훼작물이며 꽃색을 바꾸기 위한 많은 연구가 진행되어 왔다. 국화의 경우, 시아니딘 계열 안토시아닌의 축적으로 분홍색 혹은 빨간색의 꽃색을 나타내며, 카로티노이드 계열 색소물질의 축적으로 노란색 또는 초록색의 꽃색을 나타낸다. 그러나 자연계에는 파란 꽃색의 국화는 존재하지 않는다. 지금까지 플라보노이드계 물질 생합성을 조절함으로써 파란색 꽃을 개발하기 위한 여러 연구가 시도되었다. 반면 그 외의 플라보노이드계 물질을 기반으로 한 새로운 꽃색 국화 개발연구는 거의 수행되지 않았다. 플라보노이드 생합성 조절에는 다양한 전사인자들이 관여하고 플라보노이드계 물질 기반 꽃색 변경을 위해서는 구조 유전자 및 전사인자들을 이해하는 것이 중요하다. 따라서 본 논문에서는 화훼작물의 플라보노이드 생합성 및 조절에 대하여 전반적으로 서술하였고, 그 동안 보고된 플라보노이드계 물질의 꽃색 변경 연구들을 검토하였다. 이러한 결과들은 생명공학기술을 기반으로한 국화 꽃색 변경 달성을 위한 중요한 길잡이가 될 수 있을 것이다.

Keywords

Acknowledgement

Supported by : 농촌진흥청, 국립농업과학원

References

  1. Aharoni A, De Vos CHR, Wein M, Sun Z, Greco R, Kroon A, Mol JNM, O'connell AP. 2001. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28: 319-332. https://doi.org/10.1046/j.1365-313X.2001.01154.x
  2. Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo H, Jameson PE, Schwinn KE. 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26: 962-980. https://doi.org/10.1105/tpc.113.122069
  3. Andersen OM, Markham KR. 2006. Flavonoid-protein interactions. In: Flavonoids chemistry, biochemistry and applications. CRC Press. pp. 464-522.
  4. Anderson NO. 2006. Chrysanthemum. In: Flower breeding and genetics: Issues, challenges and opportunities for the 21st century. Springer. pp. 389-437.
  5. Azadi P, Bagheri H, Nalousi AM, Nazari F, Chandler SF. 2016. Current status and biotechnological advances in genetic engineering of ornamental plants. Biotechnol Adv 34: 1073-1090. https://doi.org/10.1016/j.biotechadv.2016.06.006
  6. Bedon F, Bomal C, Caron S, Levasseur C, Boyle B, Mansfield SD, Schmidt A, Gershenzon J, Grima-Pettenati J, Seguin A, MacKay J. 2010. Subgroup 4 R2R3-MYBs in conifer trees: Gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses. J Exp Bot 61: 3847-3864. https://doi.org/10.1093/jxb/erq196
  7. Ben Zvi MM, Shklarman E, Masci T, Kalev H, Debener T, Shafir S, Ovadis M, Vainstein A. 2012. PAP1 transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers. New Phytol 195: 335-345. https://doi.org/10.1111/j.1469-8137.2012.04161.x
  8. Berman J, Sheng Y, Gomez LG, Veiga T, Ni X, Farre G, Capell T, Guitián J, Guitian P, Sandmann G. 2016. Red anthocyanins and yellow carotenoids form the color of orange-flower gentian (Gentiana lutea L. var. aurantiaca). PLOS ONE 11: e0162410. https://doi.org/10.1371/journal.pone.0162410
  9. Bontpart T, Cheynier V, Ageorges A, Terrier N. 2015. BAHD or SCPL acyltransferase? What a dilemma for acylation in the world of plant phenolic compounds. New Phytol 208: 695-707. https://doi.org/10.1111/nph.13498
  10. Brugliera F, Barri-Rewell G, Holton TA, Mason JG. 1999. Isolation and characterization of a flavonoid 3'-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J 19: 441-451. https://doi.org/10.1046/j.1365-313X.1999.00539.x
  11. Brugliera F, Tao GQ, Tems U, Kalc G, Mouradova E, Price K, Stevenson K, Nakamura N, Stacey I, Katsumoto Y. 2013. Violet/blue chrysanthemums-metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors. Plant Cell Physiol 54: 1696-1710. https://doi.org/10.1093/pcp/pct110
  12. Chen SM, Li CH, Zhu XR, Deng YM, Sun W, Wang LS, Chen FD, Zhang Z. 2012. The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers. Biol Plant 56: 458-464. https://doi.org/10.1007/s10535-012-0069-3
  13. Dahlbender B, Strack D. 1984. Nitrogen nutrition and the accumulation of free and sinapoyl-bound malic acid in Raphanus sativus cotyledons. Planta 161: 142-147. https://doi.org/10.1007/BF00395474
  14. Davies KM. 2008. Modifying anthocyanin production in flowers. In: Anthocyanins biosynthesis functions, and applications. Springer. pp. 49-80.
  15. Dowrick GJ. 1953. The chromosomes of chrysanthemum, II: garden varieties. Heredity 7: 59-72. https://doi.org/10.1038/hdy.1953.5
  16. Du H, Wu J, Ji KX, Zeng QY, Bhuiya MW, Su S, Shu QY, Ren HX, Liu ZA, Wang LS. 2015. Methylation mediated by an anthocyanin, O-methyltransferase, is involved in purple flower coloration in Paeonia. J Exp Bot 66: 6563-6577. https://doi.org/10.1093/jxb/erv365
  17. Dubos C, Le Gourrierec J , Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L. 2008. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J 55: 940-953. https://doi.org/10.1111/j.1365-313X.2008.03564.x
  18. Ford CM, Boss PK, Hoj PB. 1998. Cloning and characterization of Vitis vinifera UDP-Glucose: flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize bronze-1 Locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 273: 9224-9233. https://doi.org/10.1074/jbc.273.15.9224
  19. Gachon CM, Langlois-Meurinne M, Saindrenan P. 2005. Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10: 542-549. https://doi.org/10.1016/j.tplants.2005.09.007
  20. Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW. 2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23: 1512-1522. https://doi.org/10.1105/tpc.111.084525
  21. Gross GG. 1983. Synthesis of mono-, di- and trigalloyl-${\beta}$-D-glucose by ${\beta}$-glucogallin-dependent galloyltransferases from oak leaves. Z Naturforsch 38: 519-523. https://doi.org/10.1515/znc-1983-7-804
  22. Grotewold E. 2006. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57: 761-780. https://doi.org/10.1146/annurev.arplant.57.032905.105248
  23. Hanks G. 2015. A review of production statistics for the cut flower and foliage sector 2015 (Part of AHDB Horticulture funded project PO BOF 002a). The National Cut Flower Centre, AHDB Horticulture: 102.
  24. He H, Ke H, Keting H, Qiaoyan X, Silan D. 2013. Flower colour modification of chrysanthemum by suppression of F3'H and overexpression of the exogenous Senecio cruentus F3'5'H gene. PLOS ONE 8: e74395. https://doi.org/10.1371/journal.pone.0074395
  25. Holton TA, Brugliera F, Lester DR, Tanaka Y, Hyland CD, Menting JG, Lu CY, Farcy E, Stevenson TW, Cornish EC. 1993. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366: 276-279. https://doi.org/10.1038/366276a0
  26. Hong Y, Tang X, Huang H, Zhang Y, Dai S. 2015. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum. BMC Genomics 16: 202. https://doi.org/10.1186/s12864-015-1428-1
  27. Hugueney P, Provenzano S, Verries C, Ferrandino A, Meudec E, Batelli G, Merdinoglu D, Cheynier V, Schubert A, Ageorges A. 2009. A novel cation-dependent O-methyltransferase involved in anthocyanin methylation in grapevine. Plant Physiol 150: 2057-2070. https://doi.org/10.1104/pp.109.140376
  28. Ibrahim RK, Bruneau A, Bantignies B. 1998. Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol Biol 36: 1-10. https://doi.org/10.1023/A:1005939803300
  29. Jadhav SKR, Patel KA, Dholakia BB, Khan BM. 2012. Structural characterization of a flavonoid glycosyltransferase from Withania somnifera. Bioinformation 8: 943. https://doi.org/10.6026/97320630008943
  30. Jones P, Messner B, Nakajima JI, Schaffner AR, Saito K. 2003. UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem 278: 43910-43918. https://doi.org/10.1074/jbc.M303523200
  31. Kadomura-Ishikawa Y, Miyawaki K, Takahashi A, Noji S. 2015. RNAi-mediated silencing and overexpression of the FaMYB1 gene and its effect on anthocyanin accumulation in strawberry fruit. Biol Plant 59: 677-685. https://doi.org/10.1007/s10535-015-0548-4
  32. Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A. 2007. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48: 1589-1600. https://doi.org/10.1093/pcp/pcm131
  33. Kim DH, Park SK, Lee JY, Ha SH, Lim SH. 2018. Enhancing flower color through simultaneous expression of the B-peru and mPAP1 transcription factors under control of a flower-specific promoter. Int J Mol Sci 19: 309. https://doi.org/10.3390/ijms19010309
  34. Kim S, Hwang G, Lee S, Zhu JY, Paik I, Nguyen TT, Kim J, Oh E. 2017. High ambient temperature represses anthocyanin biosynthesis through degradation of HY5. Front Plant Sci 8: 1787. https://doi.org/10.3389/fpls.2017.01787
  35. Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10: 236-242. https://doi.org/10.1016/j.tplants.2005.03.002
  36. Kojima M, Uritani I. 1972. Elucidation of the structure of a possible intermediate in chlorogenic acid biosynthesis in sweet potato root tissue. Plant Cell Physiol 13: 1075-1084.
  37. Kondo T, Kawai T, Tamura H, Goto T. 1987. Structure determination of heavenly blue anthocyanin, a complex monomeric anthocyanin from the morning glory ipomea tricolor, by means of the negative NOE method. Tetrahedron Lett 28: 2273-2276. https://doi.org/10.1016/S0040-4039(00)96099-4
  38. Kroon J, Souer E, De Graaff A, Xue Y, Mol J, Koes R. 1994. Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida: Characterization of insertion sequences in two mutant alleles. Plant J 5: 69-80. https://doi.org/10.1046/j.1365-313X.1994.5010069.x
  39. Lam KC, Ibrahim RK, Behdad B, Dayanandan S. 2007. Structure, function, and evolution of plant O-methyltransferases. Genome 50: 1001-1013. https://doi.org/10.1139/G07-077
  40. Lee YJ, Kim BG, Chong Y, Lim Y, Ahn JH. 2008. Cation dependent O-methyltransferases from rice. Planta 227: 641-647. https://doi.org/10.1007/s00425-007-0646-4
  41. Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M. 2006. Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57: 405-430. https://doi.org/10.1146/annurev.arplant.57.032905.105252
  42. Lim SH, You MK, Kim DH, Kim JK, Lee JY, Ha SH. 2016. RNAi-mediated suppression of dihydroflavonol 4-reductase in tobacco allows fine-tuning of flower color and flux through the flavonoid biosynthetic pathway. Plant Physiol Biochem 109: 482-490. https://doi.org/10.1016/j.plaphy.2016.10.028
  43. Liu X, Lin C, Ma X, Tan Y, Wang J, Zeng M. 2018. Functional characterization of a flavonoid glycosyltransferase in sweet orange (Citrus sinensis). Front Plant Sci 9: 166. https://doi.org/10.3389/fpls.2018.00166
  44. Liu XF, Xiang LL, Yin XR, Grierson D, Li F, Chen KS. 2015. The identification of a MYB transcription factor controlling anthocyanin biosynthesis regulation in Chrysanthemum flowers. Sci Hortic 194: 278-285. https://doi.org/10.1016/j.scienta.2015.08.018
  45. Luo J, Nishiyama Y, Fuell C, Taguchi G, Elliott K, Hill L, Tanaka Y, Kitayama M, Yamazaki M, Bailey P. 2007. Convergent evolution in the BAHD family of acyl transferases: Identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana. Plant J 50: 678-695. https://doi.org/10.1111/j.1365-313X.2007.03079.x
  46. Maier A, Hoecker U. 2015. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signal Behav 10: e970440. https://doi.org/10.4161/15592316.2014.970440
  47. Maier A, Schrader A, Kokkelink L, Falke C, Welter B, Iniesto E, Rubio V, Uhrig JF, Hülskamp M, Hoecker, U. 2013. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J 74: 638-651. https://doi.org/10.1111/tpj.12153
  48. Matsui K, Umemura Y, Ohme-Takagi M. 2008. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant J 55: 954-967. https://doi.org/10.1111/j.1365-313X.2008.03565.x
  49. Mazza G, Brouillard R. 1987. Recent developments in the stabilization of anthocyanins in food products. Food Chem 25: 207-225.
  50. Milkowski C, Strack D. 2004. Serine carboxypeptidase-like acyltransferases. Phytochemistry 65: 517-524. https://doi.org/10.1016/j.phytochem.2003.12.018
  51. Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2017. Status of ornamental crops. http://www.mafra.go.kr/
  52. Mol J, Grotewold E, Koes R. 1998. How genes paint flowers and seeds. Trends Plant Sci 3: 212-217. https://doi.org/10.1016/S1360-1385(98)01242-4
  53. Morita Y, Hoshino A, Kikuchi Y, Okuhara H, Ono E, Tanaka Y, Fukui Y, Saito N, Nitasaka E, Noguchi H. 2005. Japanese morning glory dusky mutants displaying reddish-brown or purplish-gray flowers are deficient in a novel glycosylation enzyme for anthocyanin biosynthesis, UDP-glucose: anthocyanidin 3-O-glucoside-2''-O-glucosyltransferase, due to 4-bp insertions in the gene. Plant J 42: 353-363. https://doi.org/10.1111/j.1365-313X.2005.02383.x
  54. Mugford ST, Milkowski C. 2012. Serine carboxypeptidase-like acyltransferases from plants. Methods in Enzymology. Elsevier 516: 279-297.
  55. Nakayama T, Suzuki H, Nishino T. 2003. Anthocyanin acyltransferases: Specificities, mechanism, phylogenetics, and applications. J Mol Catal B Enzymatic 23: 117-132. https://doi.org/10.1016/S1381-1177(03)00078-X
  56. Noda N, Aida R, Kishimoto S, Ishiguro K, Fukuchi-Mizutani M, Tanaka Y, Ohmiya A. 2013. Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins. Plant Cell Physiol 54: 1684-1695. https://doi.org/10.1093/pcp/pct111
  57. Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, Tanaka Y, Aida R. 2017. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Sci Adv 3: e1602785. https://doi.org/10.1126/sciadv.1602785
  58. Noel JP, Dixon RA, Pichersky E, Zubieta C, Ferrer JL. 2003. Structural, functional, and evolutionary basis for methylation of plant small molecules. Recent Advances in Phytochemistry. Elsevier 37: 37-58.
  59. Nozaki K, Takamura T, Fukai S. 2006. Effects of high temperature on flower colour and anthocyanin content in pink flower genotypes of greenhouse chrysanthemum (Chrysanthemum morifolium Ramat.). J Hortic Sci Biotechnol 81: 728-734. https://doi.org/10.1080/14620316.2006.11512130
  60. Offen W, Martinez-Fleites C, Yang M, Kiat-Lim E, Davis BG, Tarling CA, Ford CM, Bowles DJ, Davies GJ. 2006. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25: 1396-1405. https://doi.org/10.1038/sj.emboj.7600970
  61. Ogata J, Kanno Y, Itoh Y, Tsugawa H, Suzuki M. 2005. Plant biochemistry: Anthocyanin biosynthesis in roses. Nature 435: 757. https://doi.org/10.1038/nature435757a
  62. Ohmiya A. 2018. Molecular mechanisms underlying the diverse array of petal colors in chrysanthemum flowers. Breed Sci 68: 119-127. https://doi.org/10.1270/jsbbs.17075
  63. Ohno S, Hosokawa M, Hoshino A, Kitamura Y, Morita Y, Park KI, Nakashima A, Deguchi A, Tatsuzawa F, Doi M. 2011. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis). J Exp Bot 62: 5105-5116. https://doi.org/10.1093/jxb/err216
  64. Ono E, Fukuchi-Mizutani M, Nakamura N, Fukui Y, Yonekura-Sakakibara K, Yamaguchi M, Nakayama T, Tanaka T, Kusumi T, Tanaka Y. 2006. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc Natl Acad Sci USA 103: 11075-11080. https://doi.org/10.1073/pnas.0604246103
  65. Park CH, Chae SC, Park SY, Kim JK, Kim YJ, Chung SO, Arasu MV, Al-Dhabi NA, Park SU. 2015. Anthocyanin and carotenoid contents in different cultivars of chrysanthemum (Dendranthema grandiflorum Ramat.) flower. Molecules 20: 11090-11102. https://doi.org/10.3390/molecules200611090
  66. Polturak G, Grossman N, Vela-Corcia D, Dong Y, Nudel A, Pliner M, Levy M, Rogachev I, Aharoni A. 2017. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. Proc Natl Acad Sci USA 114: 9062-9067. https://doi.org/10.1073/pnas.1707176114
  67. Quattrocchio F, Baudry A, Lepiniec L, Grotewold E. 2006. The regulation of flavonoid biosynthesis. In: The science of flavonoids. Springer. pp. 97-122.
  68. Schwarz-Sommer Z, Davies B, Hudson A. 2003. An everlasting pioneer: the story of Antirrhinum research. Nat Rev Genet 4: 655.
  69. St-Pierre B, De Luca V. 2000. Origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Recent Adv Phytochem 34: 285-315.
  70. Sung SY, Kim SH, Velusamy V, Lee YM, Ha BK, Kim JB, Kang SY, Kim HG, Kim DS. 2013. Comparative gene expression analysis in a highly anthocyanin pigmented mutant of colorless chrysanthemum. Mol Biol Rep 40: 5177-5189. https://doi.org/10.1007/s11033-013-2620-5
  71. Tanaka Y, Brugliera F, Chandler S. 2009. Recent progress of flower colour modification by biotechnology. Int J Mol Sci 10: 5350-5369. https://doi.org/10.3390/ijms10125350
  72. Tsuda S, Fukui Y, Nakamura N, Katsumoto Y, Yonekura-Sakakibara K, Fukuchi-Mizutani M, Ohira K, Ueyama Y, Ohkawa H, Holton TA. 2004. Flower color modification of Petunia hybrida commercial varieties by metabolic engineering. Plant Biotechnol 21: 377-386. https://doi.org/10.5511/plantbiotechnology.21.377
  73. Unligil UM, Rini JM. 2000. Glycosyltransferase structure and mechanism. Curr Opin Struct Biol 10: 510-517. https://doi.org/10.1016/S0959-440X(00)00124-X
  74. Unno H, Ichimaida F, Suzuki H, Takahashi S, Tanaka Y, Saito A, Nishino T, Kusunoki M, Nakayama T. 2007. Structural and mutational studies of anthocyanin malonyltransferases establish the features of BAHD enzyme catalysis. J Biol Chem 282: 15812-15822. https://doi.org/10.1074/jbc.M700638200
  75. Wang X. 2009. Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett 583: 3303-3309. https://doi.org/10.1016/j.febslet.2009.09.042
  76. Watanabe K, Kobayashi A, Endo M, Sage-ono K, Toki S, Ono M. 2017. CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Sci Rep 7: 10028. https://doi.org/10.1038/s41598-017-10715-1
  77. Xiang LL, Liu XF, Li X, Yin XR, Grierson D, Li F, Chen KS. 2015. A novel bHLH transcription factor involved in regulating anthocyanin biosynthesis in Chrysanthemums (Chrysanthemum morifolium Ramat.). PLOS ONE 10: e0143892. https://doi.org/10.1371/journal.pone.0143892
  78. Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20: 176-185. https://doi.org/10.1016/j.tplants.2014.12.001
  79. Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K. 2010. Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of Asiatic hybrid lily. Plant Cell Physiol 51: 463-474. https://doi.org/10.1093/pcp/pcq011
  80. Yamazaki M, Yamagishi E, Gong Z, Fukuchi-Mizutani M, Fukui Y, Tanaka Y, Kusumi T, Yamaguchi M, Saito K. 2002. Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression. Plant Mol Biol 48: 401-411. https://doi.org/10.1023/A:1014043214943
  81. Ye ZH, Kneusel RE, Matern U, Varner JE. 1994. An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell 6: 1427-1439.
  82. Zhang Y, Butelli E, Martin C. 2014. Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol 19: 81-90. https://doi.org/10.1016/j.pbi.2014.05.011