DOI QR코드

DOI QR Code

The effect of water status on productive and flowering variables in young 'Arbequina' olive trees under limited irrigation water availability in a semiarid region of Chile

  • Beya-Marshall, Victor (Departamento de Produccion Agricola, Facultad de Ciencias Agronomicas, Universidad de Chile) ;
  • Herrera, Julio (Departamento de Produccion Agricola, Facultad de Ciencias Agronomicas, Universidad de Chile) ;
  • Fichet, Thomas (Departamento de Produccion Agricola, Facultad de Ciencias Agronomicas, Universidad de Chile) ;
  • Trentacoste, Eduardo R. (Instituto Nacional de Tecnologia Agropecuaria, Estacion Experimental Agropecuaria Junin) ;
  • Kremer, Cristian (Departamento de Produccion Agricola, Facultad de Ciencias Agronomicas, Universidad de Chile)
  • Received : 2017.07.07
  • Accepted : 2018.06.20
  • Published : 2018.12.31

Abstract

The intense drought affecting olive production in Northern Chile underscores the need to research non-traditional irrigation strategies to obtain the best crop performance. Accordingly, this study aimed to obtain preliminary data to guide future research on this topic. Different water replenishment levels on crop evapotranspiration ($ET_c$ ; 13.5, 27.0, 40.5, and 54%) were established in a young orchard, cv. Arbequina, from the end of fruit drop (EFD) to full bloom in the next season. We evaluated the influence of plant water status (${\Psi}_{stem}$ ) and crop load, considered as function of fruit number divided by trunk cross-sectional area, on reproductive and productive variables using multiple linear regressions. Our results show that crop load and ${\Psi}_{stem}$ measured from EFD to harvest affected yield components. Nevertheless, ${\Psi}_{stem}$ had the strongest influence on fruit size, pulp development, oil accumulation, and yield. Oil content and yield were reduced by 54% and 50% for each MPa, respectively, from ${\Psi}_{stem\;EFD-H}$ -1.8 MPa, an effect that intensified as crop load increased. During the period of flower development (September-November), the number of flowers per inflorescence and percentage of perfect flowers were reduced when ${\Psi}_{stem}$ was less than -2.0 MPa. These preliminary results showed that bud differentiation, inflorescence and flower formation are highly sensitive to water deficit.

Keywords

References

  1. Alegre S, Girona J, Arbones A, Mata M, Marsal J (2001) Estrategias de riego deficitario controlado para el riego del olivar. Especial Olivicultura III, Fruticultura Profesional 120:19-28
  2. Alegre S, Marsal J, Mata M, Arbones A, Girona J, Tovar MJ (2002) Regulated deficit irrigation in olive trees (Olea europaea L. cv. Arbequina) for oil production. Acta Hortic 586:259-262. https://doi.org/10.17660/ActaHortic.2002.586.49
  3. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration (guidelines for computing crop water requirements), Irrigation and drainage no.56
  4. AOAC (2000) Official methods of analysis of AOAC international. association of official analysis chemists international. https://doi.org/10.3109/15563657608988149
  5. Balzarini M, Gonzalez L, Tablada M, Casanoves F, Di Rienzo J, Robledo C (2008) InfoStat. Manual de usuario. Editorial Brujas, Cordoba
  6. Ben-Gal A, Yermiyahu U, Zipori I, Presnov E, Hanoch E, Dag A (2011) The influence of bearing cycles on olive oil production response to irrigation. Irrig Sci 29:253-263. https://doi.org/10.1007/s00271-010-0237-1
  7. Berenguer MJ, Vossen P, Grattan S, Connell J, Polito V (2006) Tree irrigation levels for optimum chemical and sensory properties of olive oil. HortScience 41:427-432 https://doi.org/10.21273/HORTSCI.41.2.427
  8. Bustan A, Avni A, Lavee S, Zipori I, Yeselson Y, Schaffer A, Riov J, Dag A (2011) Role of carbohydrate reserves in yield production of intensively cultivated oil olive (Olea europaea L.) trees. Tree Physiol 31:519-530. https://doi.org/10.1093/treep hys/tpr036
  9. Bustan A, Dag A, Yermiyahu U, Erel R, Presnov E, Agam N, Kool D, Iwema J, Zipori I, Ben-Gal A (2016) Fruit load governs transpiration of olive trees. Tree Physiol 36:380-391. https://doi.org/10.1093/treephys/tpv138
  10. Connor D, Fereres E (2005) The physiology of adaptation and yield expression in olive. Hortic. Rev. 34:155-229
  11. Connor D, Gomez-del-Campo M (2013) Simulation of oil productivity and quality of N-S oriented olive hedgerow orchards in response to structure and interception of radiation. Sci Hortic 150:92-99. https://doi.org/10.1016/j.scien ta.2012.09.032
  12. Costagli G, Gucci R, Rapoport HF (2003) Growth and development of fruits of olive "Frantoio" under irrigated and rainfed conditions. J. Hortic. Sci. Biotechnol. 78:119-124 https://doi.org/10.1080/14620316.2003.11511577
  13. d'Andria R (2008) Olive responses to different irrigation management in the Mediterranean environment. In: IV. Jornadas de Actualizacion En Riego Y Fertirriego, Mendoza
  14. d'Andria R, Lavini A, Morelli G, Patumi M, Terenziani S, Calandrelli D, Fragnito F, Alta VM (2004) Effect of water regimes on five pickling and double aptitude olive cultivars (Olea europaea L). J Hortic Sci Biotechnol 79:18-25. https://doi.org/10.1080/14620 316.2004.11511731
  15. Dag A, Bustan A, Avni A, Tzipori I, Lavee S, Riov J (2010) Timing of fruit removal affects concurrent vegetative growth and subsequent return bloom and yield in olive (Olea europaea L.). Sci Hortic 123:469-472. https://doi.org/10.1016/j.scienta.2009.11.014
  16. Di Rienzo J, Casanoves F, Balzarini M, Gonzalez L, Tablada M, Robledo C (2013) Infostat - Sofware estadistico. Universidad Nacional de Cordoba, Argentina, Universidad Nacional de Cordoba, Argentina
  17. Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, New York. https://doi.org/10.1002/9781118625590
  18. Fereres E, Pruitt W, Beutel J, Henderson DW, Holzapfel E, Schelbach H, Uriu K (1981) Evapotranspiration and drip irrigation scheduling. In: Fereres E (ed) Drip irrigation management. Division of Agricultural Sciences, University of California, Oakland, pp 8-13
  19. Fereres E, Goldhamer D, Sadras V (2012) Yield response to water of fruit trees and vines: guidelines. In: Steduto P, Hsiao T, Fereres E, Raes D (eds) Crop yield response to water, vol 66. Irrigation and drainage paper. FAO, Roma, pp 246-295
  20. Fichet T, Gonzalez C (2011) Comportamiento fenologico del olivo en la Region de Atacama. In: Fichet T, Razeto B, Curcovik T (eds) El Olivo: Estudio Agronomico En La Region de Atacama. Facultad de Ciencias Agronomicas, Universidad de Chile, Santiago, pp 13-38
  21. Girona J, Luna M, Arbones A, Mata M, Rufat J, Marsal J (2002) Young olive trees responses (Olea europaea , cv "Arbequina") to different water supplies. Water function determination. Acta Hortic 586:277-280. https://doi.org/10.17660/ActaHortic.2002.586.53
  22. Goldhamer D (1999) Regulated deficit irrigation for California canning olives. Acta Hortic 474:369-372. https://doi.org/10.17660/ActaHortic.1999.474.76
  23. Gomez-del-Campo M (2013a) Summer deficit irrigation in a hedgerow olive orchard cv. Arbequina: relationship between soil and tree water status, and growth and yield components. Span J Agric Res 11:547-557. https://doi.org/10.5424/sjar/20131 12-3360
  24. Gomez-del-Campo M (2013b) Summer deficit-irrigation strategies in a hedgerow olive orchard cv. "Arbequina": effect on fruit characteristics and yield. Irrig Sci 31:259-269. https://doi.org/10.1007/s00271-011-0299-8
  25. Gomez-del-Campo M, Leal A, Pezuela C (2008) Relationship of stem water potential and leaf conductance to vegetative growth of young olive trees in a hedgerow orchard. Aust J Agric Res 59:270-279. https://doi.org/10.1071/AR07200
  26. Grattan S, Berenguer MJ, Connell J, Polito V, Vossen P (2006) Olive oil production as influenced by different quantities of applied water. Agric Water Manag 85:133-140. https://doi.org/10.1016/j.agwat.2006.04.001
  27. Gucci R, Lodolini EM, Rapoport HF (2009) Water deficit-induced changes in mesocarp cellular processes and the relationship between mesocarp and endocarp during olive fruit development. Tree Physiol 29:1575-1585. https://doi.org/10.1093/treephys/tpp086
  28. Guerfel M, Baccouri O, Boujnah D, Chaïbi W, Zarrouk M (2009) Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci Hortic 119:257-263. https://doi.org/10.1016/j.scien ta.2008.08.006
  29. IREN (1964) Estudio de Suelos del Proyecto Aerofotogrametrico CHILE/OEA/BID. Instituto de Investigacion de Recursos Naturales, Santiago
  30. Lavee S, Hanoch E, Wodner M, Abramowitch H (2007) The effect of predetermined deficit irrigation on the performance of cv. Muhasan olives (Olea europaea L.) in the eastern coastal plain of Israel. Sci Hortic 112:156-163. https://doi.org/10.1016/j.scienta.2006.12.017
  31. Lodolini EM, Gucci R, Rapoport HF (2011) Interaction of crop load and water status on growth of olive fruit tissues and mesocarp cells. Acta Hortic 924:89-94. https://doi.org/10.17660/ActaHortic.2011.924.10
  32. Lodolini EM, Polverigiani S, Ali S, Mutawea M, Qutub M, Pierini F, Neri D (2016) Effect of complementary irrigation on yield components and alternate bearing of a traditional olive orchard in semi-arid conditions. Span J Agric Res 14:e1203. https://doi.org/10.5424/sjar/2016142-8834
  33. Martin-Vertedor A, Perez J, Prieto H, Fereres E (2011) Interactive responses to water deficits and crop load in olive (Olea europaea L., cv. Morisca). II: water use, fruit and oil yield. Agric Water Manag 98:950-958. https://doi.org/10.1016/j.agwat.2011.01.003
  34. Moriana A, Villalobos F, Fereres E (2002) Stomatal and photosynthetic responses of olive (Olea europaea L.) leaves to water deficits. Plant, Cell Environ 25:395-405. https://doi.org/10.1046/j.0016-8025.2001.00822.x
  35. Moriana A, Orgaz F, Pastor M, Fereres E (2003) Yield responses of a mature olive orchard to water deficits. J Am Soc Hortic Sci 128:425-431. https://doi.org/10.3389/fpls.2017.01280
  36. Moriana A, Perez-Lopez D, Prieto MH, Ramirez-Santa-Pau M, Perez-Rodriguez J (2012) Midday stem water potential as a useful tool for estimating irrigation requirements in olive trees. Agric Water Manag 112:43-54. https://doi.org/10.1016/j.agwat.2012.06.003
  37. Naor A, Schneider D, Ben-Gal A, Zipori I, Dag A, Kerem Z, Birger R, Peres M, Gal Y (2013) The effects of crop load and irrigation rate in the oil accumulation stage on oil yield and water relations of "Koroneiki" olives. Irrig Sci 31:781-791. https://doi.org/10.1007/s00271-012-0363-z
  38. Pierantozzi P, Torres M, Bodoira R, Maestri D (2013) Water relations, biochemical-physiological and yield responses of olive trees (Olea europaea L. cvs. Arbequina and Manzanilla) under drought stress during the pre-flowering and flowering period. Agric Water Manag 125:13-25. https://doi.org/10.1016/j.agwat.2013.04.003
  39. Pierantozzi P, Torres M, Lavee S, Maestri D (2014) Vegetative and reproductive responses, oil yield and composition from olive trees (Olea europaea ) under contrasting water availability during the dry winter-spring period in central Argentina. Ann Appl Biol 164:116-127. https://doi.org/10.1111/aab.12086
  40. Puertas C, Trentacoste E, Morabito J, Perez J (2012) Effects of regulated deficit irrigation during stage III of fruit development on yield and oil quality of olive trees (Olea europaea L. "Arbequina"). Acta Hortic 889:303-310. https://doi.org/10.17660/ActaHortic.2011.889.36
  41. Rapoport HF, Costagli G, Gucci R (2004) The effect of water deficit during early fruit development on olive fruit morphogenesis. J Am Soc Hortic Sci 129:121-127 https://doi.org/10.21273/JASHS.129.1.0121
  42. Rapoport HF, Hammami S, Martins P, Perez-Priego O, Orgaz F (2012) Influence of water deficits at different times during olive tree inflorescence and flower development. Environ Exp Bot 77:227-233. https://doi.org/10.1016/j.envex pbot.2011.11.021
  43. Santibanez F, Santibanez P, Caroca C, Morales P, Gonzalez P, Gajardo N, Perry P, Melillan C (2014) Atlas del Cambio Climatico en las Zonas de Regimen Arido y Semiarido. Regiones de Coquimbo, Valparaiso y Metropolitana, Universidad de Chile, Santiago
  44. Llacer G, Meier U (2002) Phenological growth stages of olive trees (Olea europaea L.). Ann Appl Biol 140:151-157. https://doi.org/10.1111/j.1744-7348.2002.tb00167.x
  45. Sofo A, Manfreda S, Dichio B, Fiorentino M, Xiloyannis C (2007) The olive tree: a paradigm for drought tolerance in Mediterranean climates. Hydrol Earth Syst Sci Discuss 4:2811-2835. https://doi.org/10.5194/hess-12-293-2008
  46. Tous J, Romero A, Hermoso JF, Msallem M, Larbi A (2014) Olive orchard design and mechanization: present and future. Acta Hortic 1057:231-246. https://doi.org/10.17660/ActaHortic.2014.1057.27
  47. Trentacoste ER, Sadras VO, Puertas CM (2010) Effect of fruit load on oil yield components and dynamics of fruit growth and oil accumulation in olive (Olea europaea L.). Eur J Agron 32:249-254. https://doi.org/10.1016/j.eja.2010.01.002
  48. Trentacoste ER, Puertas CM, Sadras VO (2015) Effect of irrigation and tree density on vegetative growth, oil yield and water use efficiency in young olive orchard under arid conditions in Mendoza, Argentina. Irrig Sci 33:429-440. https://doi.org/10.1007/s00271-015-0479-z
  49. Uribe J, de la Fuente A, Paneque M (2012) Atlas bio-climatico de Chile. Universidad de Chile, Santiago
  50. Yang Y (2005) Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation. Biometrika 92:937-950. https://doi.org/10.1093/biomet/92.4.937

Cited by

  1. Verticillium Wilt of Olive and Its Control: What Did We Learn during the Last Decade? vol.9, pp.6, 2018, https://doi.org/10.3390/plants9060735
  2. Establishing a Reference Baseline for Midday Stem Water Potential in Olive and Its Use for Plant-Based Irrigation Management vol.12, pp.None, 2021, https://doi.org/10.3389/fpls.2021.791711