Acknowledgement
Supported by : National Research Foundation (NRF) of Korea, Sogang University
References
- Korin, N., Gounis, M.J., Wakhloo, A.K. & Ingber, D.E. Targeted Drug Delivery to Flow-Obstructed Blood Vessels Using Mechanically Activated Nanotherapeutics. JAMA Neurol. 72, 119-122 (2015). https://doi.org/10.1001/jamaneurol.2014.2886
- Chistiakov, D.A., Orekhov, A.N. & Bobryshev, Y.V. Effects of shear stress on endothelial cells: go with the flow. Acta Physiol. 219, 382-408 (2017). https://doi.org/10.1111/apha.12725
- Zhang, X., Jones, P. & Haswell, S.J. Attachment and detachment of living cells on modified microchannel surfaces in a microfluidic-based lab-on-a-chip system. Chem. Eng. J. 135, S82-88 (2008). https://doi.org/10.1016/j.cej.2007.07.054
- Plouffe, B.D. et al. Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow. Langmuir 23, 5050-5055 (2007). https://doi.org/10.1021/la0700220
- Plouffe, B.D., Kniazeva, T., Mayer, J.E., Murthy, S.K. & Sales, V.L. Development of microfluidics as endothelial progenitor cell capture technology for cardiovascular tissue engineering and diagnostic medicine. FASEB J. 23, 3309-3314 (2009). https://doi.org/10.1096/fj.09-130260
- Sin, A., Murthy, S.K., Revzin, A., Tompkins, R.G. & Toner, M. Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes. Biotechnol. Bioeng. 91, 816-826 (2005). https://doi.org/10.1002/bit.20556
- Sorescu, G.P. et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. J. Biol. Chem. 278, 31128-31135 (2003). https://doi.org/10.1074/jbc.M300703200
- Glen, K. et al. Modulation of functional responses of endothelial cells linked to angiogenesis and inflammation by shear stress: differential effects of the mechanotransducer CD31. J. Cell Physiol. 227, 2710-2721 (2012). https://doi.org/10.1002/jcp.23015
- Stolberg, S. & McCloskey, K.E. Can shear stress direct stem cell fate? Biotechnol. Progr. 25, 10-19 (2009). https://doi.org/10.1002/btpr.124
- Park, J. et al. Control of stem cell fate and function by engineering physical microenvironments. Intrgr. Biol. 4, 1008-1018 (2012). https://doi.org/10.1039/c2ib20080e
- Bowden, N. et al. Experimental Approaches to Study Endothelial Responses to Shear Stress. Antioxid. Redox Signal. 25, 389-400 (2016). https://doi.org/10.1089/ars.2015.6553
- Chiu, D.T. et al. Small but Perfectly Formed? Successes, Challenges, and Opportunities for Microfluidics in the Chemical and Biological Sciences. Chem. 2, 201-223 (2017). https://doi.org/10.1016/j.chempr.2017.01.009
- Kim, T.H., Lee, J.M., Chung, B.H. & Chung. B.G. Development of microfluidic LED sensor platform. Nano Converg. 2, 12 (2015). https://doi.org/10.1186/s40580-015-0043-9
- Kim, J.-y., Chang, S.-I. & O'Hare, D. Integration of monolithic porous polymer with droplet-based microfluidics on a chip for nano/picoliter volume sample analysis. Nano Converg. 1, 3 (2014). https://doi.org/10.1186/s40580-014-0003-9
- Panigrahi, P.K. Transport Phenomena in Microfluidic Systems: John Wiley & Sons, pp. 13-19 (2016).
- Yuki, T., Masayuki, Y., Teruo, O., Takehiko, K. & Kiichi, S. Evaluation of effects of shear stress on hepatocytes by a microchip-based system. Meas. Sci. Technol. 17, 3167 (2006). https://doi.org/10.1088/0957-0233/17/12/S08
- Gutierrez, E. & Groisman, A. Quantitative Measurements of the Strength of Adhesion of Human Neutrophils to a Substratum in a Microfluidic Device. Anal. Chem. 79, 2249-2258 (2007). https://doi.org/10.1021/ac061703n
- Rupprecht, P. et al. A tapered channel microfluidic device for comprehensive cell adhesion analysis, using measurements of detachment kinetics and shear stressdependent motion. Biomicrofluidics 6, 014107 (2012). https://doi.org/10.1063/1.3673802
- Kim, H.W., Han, S., Kim, W., Lim, J. & Kim, D.S. Modulating wall shear stress gradient via equilateral triangular channel for in situ cellular adhesion assay. Biomicrofluidics 10, 054119 (2016). https://doi.org/10.1063/1.4965822
- Chen, W.-M. et al. A novel gait platform to measure isolated plantar metatarsal forces during walking. J. Biomech. 43, 2017-2021 (2010). https://doi.org/10.1016/j.jbiomech.2010.03.036
- Karki, S., Lekkala, J., Kuokkanen, H. & Halttunen, J. Development of a piezoelectric polymer film sensor for plantar normal and shear stress measurements. Sens. Actuators A Phys. 154, 57-64 (2009). https://doi.org/10.1016/j.sna.2009.07.010
- Heywood, E.J., Jeutter, D.C. & Harris, G.F. Tri-axial plantar pressure sensor: design, calibration and characterization. The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2010-2013 (2004).
- Rajala, S. & Lekkala, J. Plantar shear stress measurements - A review. Clin. Biomech. 29, 475-483 (2014). https://doi.org/10.1016/j.clinbiomech.2014.04.009
- Gnanamanickam, E.P., Nottebrock, B., Grosse, S., Sullivan, J.P. & Schroder, W. Measurement of turbulent wall shear-stress using micro-pillars. Meas. Sci. Technol. 24, 124002 (2013). https://doi.org/10.1088/0957-0233/24/12/124002
- Green, J.V. et al. Effect of channel geometry on cell adhesion in microfluidic devices. Lab Chip 9, 677-685 (2009). https://doi.org/10.1039/B813516A
- Lee, J.M., Kim, J.-e., Kang, E., Lee, S.-H. & Chung, B.G. An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells. Electrophoresis 32, 3133-3137 (2011). https://doi.org/10.1002/elps.201100161
- Galie, P., Van Oosten, A., Chen, C. & Janmey, P. Application of multiple levels of fluid shear stress to endothelial cells plated on polyacrylamide gels. Lab Chip 15, 1205-1212 (2015). https://doi.org/10.1039/C4LC01236D
- Back, L.H., Radbill, J.R., Cho, Y.I. & Crawford, D.W. Measurement and prediction of flow through a replica segment of a mildly atherosclerotic coronary artery of man. J. Biomech. 19, 1-17 (1986). https://doi.org/10.1016/0021-9290(86)90104-1
- Saxena, A., Ng, E. & Raman, V. Thermographic venous blood flow characterization with external cooling stimulation. Infrared Phys. Technol. 90, 8-19 (2018). https://doi.org/10.1016/j.infrared.2018.02.001
- Inoguchi, H., Tanaka, T., Maehara, Y. & Matsuda, T. The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft. Biomaterials 28, 486-495 (2007). https://doi.org/10.1016/j.biomaterials.2006.09.020
- Abu-Reesh, I. & Kargi, F. Biological responses of hybridoma cells to defined hydrodynamic shear stress. J. Biotechnol. 9, 167-178 (1989). https://doi.org/10.1016/0168-1656(89)90106-5
- Bruus, H. Acoustofluidics 1: Governing equations in microfluidics. Lab Chip 11, 3742-3751 (2011). https://doi.org/10.1039/c1lc20658c
- Duffy, D.C., McDonald, J.C., Schueller, O.J.A. & Whitesides, G.M. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal. Chem. 70, 4974-4984 (1998). https://doi.org/10.1021/ac980656z
- Choi, J.W. et al. Dual-nozzle microfluidic droplet generator. Nano Converg. 5, 12 (2018). https://doi.org/10.1186/s40580-018-0145-2
- Choi, J.-H. et al. Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-a-chips microphyiological system. Nano Converg. 6, 24 (2016).
- Kim, J.-Y., Chang, S.-I., deMello, A.J. & O'Hare, D. Integration of monolithic porous polymer with droplet- based microfluidics on a chip for nano/picoliter volume sample analysis. Nano Converg. 1, 3 (2014). https://doi.org/10.1186/s40580-014-0003-9
Cited by
- A Review of Electrical Impedance Characterization of Cells for Label-Free and Real-Time Assays vol.13, pp.4, 2018, https://doi.org/10.1007/s13206-019-3401-6
- Hydrogel-integrated Microfluidic Systems for Advanced Stem Cell Engineering vol.13, pp.4, 2018, https://doi.org/10.1007/s13206-019-3402-5
- MAGNETOPHORETIC CIRCUIT BIOCOMPATIBILITY vol.20, pp.7, 2018, https://doi.org/10.1142/s0219519420500505
- In Vitro Flow Chamber Design for the Study of Endothelial Cell (Patho)Physiology vol.144, pp.2, 2022, https://doi.org/10.1115/1.4051765