DOI QR코드

DOI QR Code

Detection of Bacillus Cereus Using Bioluminescence Assay with Cell Wall-binding Domain Conjugated Magnetic Nanoparticles

  • Park, Chanyong (Department of Biomedical Engineering, Sungkyunkwan University) ;
  • Kong, Minsuk (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Ju-Hoon (Department of Food Science and Biotechnology, KyungHee University) ;
  • Ryu, Sangryeol (Department of Agricultural Biotechnology, Seoul National University) ;
  • Park, Sungsu (Department of Biomedical Engineering, Sungkyunkwan University)
  • Received : 2018.07.12
  • Accepted : 2018.08.13
  • Published : 2018.12.20

Abstract

Bacillus cereus can cause blood infections (i.e., sepsis). Its early detection is very important for treating patients. However, an antibody with high binding affinity to B. cereus is not currently available. Bacteriophage cell wall-binding domain (CBD) has strong and specific binding affinity to B. cereus. Here, we report the improvement in the sensitivity of an ATP bioluminescence assay for B. cereus detection using CBD-conjugated magnetic nanoparticles (CBD-MNPs). The assay was able to detect as few as 10 colony forming units (CFU) per mL and $10^3CFU\;per\;mL$ in buffer and blood. CBD-MNPs did not show any cross-reactivity with other microorganisms. These results demonstrate the feasibility of the ATP assay for the detection of B. cereus.

Keywords

Acknowledgement

Supported by : Ministry of Science and ICT of Korea

References

  1. Sutherland, A. et al. Development and validation of a novel molecular biomarker diagnostic test for the early detection of sepsis. Crit. Care 15, R149 (2011). https://doi.org/10.1186/cc10274
  2. Ikeda, M. et al. Clinical characteristics and antimicrobial susceptibility of Bacillus cereus blood stream infections. Ann. Clin. Microbiol. Antimicrob. 14, 43 (2015). https://doi.org/10.1186/s12941-015-0104-2
  3. Goto, M. & Al-Hasan, M. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin. Microbiol. Infect. 19, 501-509 (2013). https://doi.org/10.1111/1469-0691.12195
  4. Angus, D.C. et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29, 1303-1310 (2001). https://doi.org/10.1097/00003246-200107000-00002
  5. Shen, H. et al. Rapid and selective detection of pathogenic bacteria in bloodstream infections with aptamer-based recognition. ACS Appl. Mater. Interfaces 8, 19371-19378 (2016). https://doi.org/10.1021/acsami.6b06671
  6. Yagupsky, P. & Nolte, F. Quantitative aspects of septicemia. Clin. Microbiol. Rev. 3, 269-279 (1990). https://doi.org/10.1128/CMR.3.3.269
  7. Reier-Nilsen, T., Farstad, T., Nakstad, B., Lauvrak, V. & Steinbakk, M. Comparison of broad range 16S rDNA PCR and conventional blood culture for diagnosis of sepsis in the newborn: a case control study. BMC Pediatr. 9, 5 (2009). https://doi.org/10.1186/1471-2431-9-5
  8. Ahmed, A., Rushworth, J.V., Hirst, N.A. & Millner, P.A. Biosensors for whole-cell bacterial detection. Clin. Microbiol. Rev. 27, 631-646 (2014). https://doi.org/10.1128/CMR.00120-13
  9. Toh, S.Y., Citartan, M., Gopinath, S.C. & Tang, T.H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron. 64, 392-403 (2015). https://doi.org/10.1016/j.bios.2014.09.026
  10. Chen, A. & Yang, S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron. 71, 230-242 (2015). https://doi.org/10.1016/j.bios.2015.04.041
  11. Kong, M. et al. A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus. Eur. Biophys. J. 44, 437-446 (2015). https://doi.org/10.1007/s00249-015-1044-7
  12. Lim, T., Lee, S.Y., Yang, J., Hwang, S.Y. & Ahn, Y. Microfluidic biochips for simple impedimetric detection of thrombin based on label-free DNA aptamers. BioChip J. 11, 109-115 (2017). https://doi.org/10.1007/s13206-016-1203-7
  13. Joshi, R. et al. Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol. Cell. Probes 23, 20-28 (2009). https://doi.org/10.1016/j.mcp.2008.10.006
  14. Kretzer, J.W. et al. Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl. Environ. Microbiol. 73, 1992-2000 (2007). https://doi.org/10.1128/AEM.02402-06
  15. Kong, M., Shin, J.H., Heu, S., Park, J.-K. & Ryu, S. Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin. Biosens. Bioelectron. 96, 173-177 (2017). https://doi.org/10.1016/j.bios.2017.05.010
  16. Molin, O., Nilsson, L. & Ansehn, S. Rapid detection of bacterial growth in blood cultures by bioluminescent assay of bacterial ATP. J. Clin. Microbiol. 18, 521-525 (1983).
  17. Nilsson, L., Molin, O. & Ansehn, S. Bioluminescent assay of bacterial ATP for rapid detection of bacterial growth in clinical blood cultures. Luminescence 3, 101-104 (1989).
  18. Park, C. et al. 3D-printed microfluidic magnetic preconcentrator for the detection of bacterial pathogen using an ATP luminometer and antibody-conjugated magnetic nanoparticles. J. Microbiol. Methods 132, 128-133 (2017). https://doi.org/10.1016/j.mimet.2016.12.001
  19. Arroyo, M.G. et al. Effectiveness of ATP bioluminescence assay for presumptive identification of microorganisms in hospital water sources. BMC Infect. Dis. 17, 458 (2017). https://doi.org/10.1186/s12879-017-2562-y
  20. Wright, D., Chapman, P. & Siddons, C. Immunomagnetic separation as a sensitive method for isolating Escherichia coli O157 from food samples. Epidemiol. Infect. 113, 31-39 (1994). https://doi.org/10.1017/S0950268800051438
  21. Skjerve, E. & Olsvik, O. Immunomagnetic separation of Salmonella from foods. Int. J. Food Microbiol. 14, 11-17 (1991). https://doi.org/10.1016/0168-1605(91)90032-K
  22. Aydin, M. et al. Rapid and Sensitive Detection of Escherichia coli O157:H7 in Milk and Ground Beef Using Magnetic Bead-Based Immunoassay Coupled with Tyramide Signal Amplification. J. Food Prot. 77, 100-105 (2014). https://doi.org/10.4315/0362-028X.JFP-13-274
  23. Lee, J., Park, C., Kim, Y. & Park, S. Signal enhancement in ATP bioluminescence to detect bacterial pathogens via heat treatment. BioChip J. 11, 287-293 (2017). https://doi.org/10.1007/s13206-017-1404-8
  24. Ganesh, I. et al. An integrated microfluidic PCR system with immunomagnetic nanoparticles for the detection of bacterial pathogens. Biomed. Microdevices 18, 116 (2016). https://doi.org/10.1007/s10544-016-0139-y
  25. Kong, M., Kim, M. & Ryu, S. Complete genome sequence of Bacillus cereus bacteriophage PBC1. J. Virol. 86, 6379-6380 (2012). https://doi.org/10.1128/JVI.00706-12
  26. Pal, S., Alocilja, E.C. & Downes, F.P. Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. Biosens. Bioelectron. 22, 2329-2336 (2007). https://doi.org/10.1016/j.bios.2007.01.013
  27. Oda, M. et al. Role of sphingomyelinase in infectious diseases caused by Bacillus cereus. PLoS ONE 7, e38054 (2012). https://doi.org/10.1371/journal.pone.0038054
  28. Mastronardi, C., Yang, L., Halpenny, M., Toye, B. & Ramirez-Arcos, S. Evaluation of the sterility testing process of hematopoietic stem cells at Canadian Blood Services. Transfusion 52, 1778-1784 (2012). https://doi.org/10.1111/j.1537-2995.2011.03530.x

Cited by

  1. Multifunctional Nanomaterial-alginate Drug Delivery and Imaging System for Cancer Therapy vol.13, pp.3, 2018, https://doi.org/10.1007/s13206-019-3309-1
  2. MALDI-TOF Mass Spectrometry Based on Parylene-Matrix Chip for the Analysis of Lysophosphatidylcholine in Sepsis Patient Sera vol.91, pp.22, 2018, https://doi.org/10.1021/acs.analchem.9b04019
  3. Biologically Benign Multi-functional Mesoporous Silica Encapsulated Gold/Silver Nanorods for Anti-bacterial Applications by On-demand Release of Silver Ions vol.13, pp.4, 2018, https://doi.org/10.1007/s13206-019-3407-0
  4. Advanced Methods for Detection of Bacillus cereus and Its Pathogenic Factors vol.20, pp.9, 2018, https://doi.org/10.3390/s20092667
  5. Reporter Phage-Based Detection of Bacterial Pathogens: Design Guidelines and Recent Developments vol.12, pp.9, 2020, https://doi.org/10.3390/v12090944
  6. Bacillus cereus food intoxication and toxicoinfection vol.20, pp.4, 2021, https://doi.org/10.1111/1541-4337.12785
  7. Enhanced Luminescent Detection of Circulating Tumor Cells by a 3D Printed Immunomagnetic Concentrator vol.11, pp.8, 2021, https://doi.org/10.3390/bios11080278