Acknowledgement
Supported by : National Research Foundation of Korea (NRF), Gachon University
References
- Wang, R. et al. Functional protein-organic/inorganic hybrid nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5, 320-328 (2013). https://doi.org/10.1002/wnan.1210
- Ge, J., Lu, D.N., Liu, Z.X. & Liu, Z. Recent advances in nanostructured biocatalysts. Biochem. Eng. J. 44, 53-59 (2009). https://doi.org/10.1016/j.bej.2009.01.002
- Sassolas, A., Blum, L.J. & Leca-Bouvier, B.D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 30, 489-511 (2012). https://doi.org/10.1016/j.biotechadv.2011.09.003
- Luckarift, H.R., Spain, J.C., Naik, R.R. & Stone, M.O. Enzyme immobilization in a biomimetic silica support. Nat. Biotechnol. 22, 211-213 (2004). https://doi.org/10.1038/nbt931
-
Kim, M.I., Shim, J., Li, T., Lee, J. & Park, H.G. Fabrication of Nanoporous Nanocomposites Entrapping
$Fe_3O_4$ Magnetic Nanoparticles and Oxidases for Colorimetric Biosensing. Chem. Eur. J. 17, 10700-10707 (2011). https://doi.org/10.1002/chem.201101191 - Kim, J., Grate, J.W. & Wang, P. Nanostructures for enzyme stabilization. Chem. Eng. Sci. 61, 1017-1026 (2006). https://doi.org/10.1016/j.ces.2005.05.067
- Kim, J.B., Grate, J.W. & Wang, P. Nanobiocatalysis and its potential applications. Trends Biotechnol. 26, 639-646 (2008). https://doi.org/10.1016/j.tibtech.2008.07.009
- Wang, P. Nanoscale biocatalyst systems. Curr. Opin. Biotechnol. 17, 574-579 (2006). https://doi.org/10.1016/j.copbio.2006.10.009
- Ge, J. et al. Molecular fundamentals of enzyme nanogels. J. Phys. Chem. B 112, 14319-14324 (2008). https://doi.org/10.1021/jp8053923
- Heredia, K.L. et al. In situ preparation of protein - "Smart" polymer conjugates with retention of bioactivity. J. Am. Chem. Soc. 127, 16955-16960 (2005). https://doi.org/10.1021/ja054482w
- Ge, J., Lei, J. & Zare, R.N. Protein - inorganic hybrid nanoflowers. Nat. Nanotechnol. 7, 428 (2012). https://doi.org/10.1038/nnano.2012.80
-
Sun, Z.Q. et al. Rational design of 3D dendritic
$TiO_2$ nanostructures with favorable architectures. J. Am. Chem. Soc. 133, 19314-19317 (2011). https://doi.org/10.1021/ja208468d - Mohanty, A., Garg, N. & Jin, R.C. A Universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew. Chem. Int. Ed. 49, 4962-4966 (2010). https://doi.org/10.1002/anie.201000902
- Jia, W.Z., Su, L. & Lei, Y. Pt nanoflower/polyaniline composite nanofibers based urea biosensor. Biosens. Bioelectron. 30, 158-164 (2011). https://doi.org/10.1016/j.bios.2011.09.006
- Kharisov, B.I.A. Review for synthesis of nanoflowers. Recent Pat. Nanotechnol. 2, 190-200 (2008). https://doi.org/10.2174/187221008786369651
- Lee, S.W., Cheon, S.A., Kim, M.I. & Park, T.J. Organic-inorganic hybrid nanoflowers: types, characteristics, and future prospects. J. Nanobiotechnol. 13, 54 (2015). https://doi.org/10.1186/s12951-015-0118-0
- Lei, Z.X. et al. Recent advances in biomolecule immobilization based on self-assembly: organic-inorganic hybrid nanoflowers and metal-organic frameworks as novel substrates. J. Mater. Chem. B 6, 1581-1594 (2018). https://doi.org/10.1039/C7TB03310A
- Zhao, Z. et al. Structure advantage and peroxidase activity enhancement of deuterohemin-peptide - inorganic hybrid flowers. RSC Adv. 6, 104265-104272 (2016). https://doi.org/10.1039/C6RA24192A
- Wu, Z.-F. et al. Amino acids-incorporated nanoflowers with an intrinsic peroxidase-like activity. Sci. Rep. 6, 22412 (2016). https://doi.org/10.1038/srep22412
- Park, K.S. et al. A simple and eco-friendly one-pot synthesis of nuclease-resistant DNA - inorganic hybrid nanoflowers. J. Mater. Chem. B 5, 2231-2234 (2017). https://doi.org/10.1039/C6TB03047E
- Wang, L.B. et al. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance. J. Am. Chem. Soc. 135, 1272-1275 (2013). https://doi.org/10.1021/ja3120136
-
Zhang, B. et al. Preparation of lipase/
$Zn_3(PO_4)_2$ hybrid nanoflower and its catalytic performance as an immobilized enzyme. Chem. Eng. J. 291, 287-297 (2016). https://doi.org/10.1016/j.cej.2016.01.104 -
Lopez-Gallego, F. & Yate, L. Selective biomineralization of
$Co_3(PO_4)_2$ -sponges triggered by His-tagged proteins: efficient heterogeneous biocatalysts for redox processes. Chem. Commun. 51, 8753-8756 (2015). https://doi.org/10.1039/C5CC00318K - Zhang, Z. et al. Manganese (II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine. Sens. Actuat. B: Chem. 211, 310-317 (2015). https://doi.org/10.1016/j.snb.2015.01.106
- Altinkaynak, C., Tavlasoglu, S. & Ocsoy, I. A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability. Enzyme Microb. Technol. 93, 105-112 (2016).
- Batule, B.S., Park, K.S., Kim, M.I. & Park, H.G. Ultrafast sonochemical synthesis of proteininorganic nanoflowers. Int. J. Nanomed. 10, 137-142 (2015).
- Cui, J., Zhao, Y., Liu, R., Zhong, C. & Jia, S. Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci. Rep. 6, 27928 (2016). https://doi.org/10.1038/srep27928
- Lee, H.R., Chung, M., Kim, M.I. & Ha, S.H. Preparation of glutaraldehyde-treated lipase-inorganic hybrid nanoflowers and their catalytic performance as immobilized enzymes. Enzyme Microb. Technol. 105, 24-29 (2017). https://doi.org/10.1016/j.enzmictec.2017.06.006
- Zhu, L. et al. Rapid detection of phenol using a membrane containing laccase nanoflowers. Chem. Asian J. 8, 2358-2360 (2013). https://doi.org/10.1002/asia.201300020
- Li, M. et al. Biomimetic copper-based inorganic - protein nanoflower assembly constructed on the nanoscale fibrous membrane with enhanced stability and durability. J. Phys. Chem. C 120, 17348-17356 (2016). https://doi.org/10.1021/acs.jpcc.6b03537
- Xie, W.-Y., Song, F., Wang, X.-L. & Wang, Y.-Z. Development of copper phosphate nanoflowers on soy protein toward a superhydrophobic and self-cleaning film. ACS Sustain. Chem. Eng. 5, 869-875 (2016).
- Wang, L.-B. et al. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performanc. J. Am. Chem. Soc. 135, 1272-1275 (2013). https://doi.org/10.1021/ja3120136
- Yin, Y. et al. An enzyme - inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. J. Mater. Chem. B 3, 2295-2300 (2015). https://doi.org/10.1039/C4TB01697A
- Ke, C., Fan, Y., Chen, Y., Xu, L. & Yan, Y. A new lipase - inorganic hybrid nanoflower with enhanced enzyme activity. RSC Adv. 6, 19413-19416 (2016). https://doi.org/10.1039/C6RA01564F
- Ye, R. et al. Bioinspired synthesis of all-in-one organic - inorganic hybrid nanoflowers combined with a handheld pH meter for on-site detection of food pathogen. Small 12, 3094-3100 (2016). https://doi.org/10.1002/smll.201600273
- Liu, Y., Zhang, Y., Li, X., Yuan, Q. & Liang, H. Self-repairing metal - organic hybrid complexes for reinforcing immobilized chloroperoxidase reusability. Chem. Commun. 53, 3216-3219 (2017). https://doi.org/10.1039/C6CC10319G
-
Zhang, B. et al. Papain/
$Zn_3(PO_4)_2$ hybrid nanoflower: preparation, characterization and its enhanced catalytic activity as an immobilized enzyme. RSC Adv. 6, 46702-46710 (2016). https://doi.org/10.1039/C6RA05308D -
Zhang, B. et al. Red-blood-cell-like BSA/
$Zn_3(PO_4)_2$ hybrid particles: preparation and application to adsorption of heavy metal ions. Appl. Surf. Sci. 366, 328-338 (2016). https://doi.org/10.1016/j.apsusc.2016.01.074 -
Zhang, Z. et al. A feasible synthesis of
$Mn_3(PO_4)_2@$ BSA nanoflowers and its application as the support nanomaterial for Pt catalyst. J. Power Sources 284, 170-177 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.011 - Li, W. et al. Efficient in situ growth of enzyme-inorganic hybrids on paper strips for the visual detection of glucose. Biosens. Bioelectron. 99, 603-611 (2018). https://doi.org/10.1016/j.bios.2017.08.015
- Zhang, M. et al. In situ reduction of silver nanoparticles on hybrid polydopamine - copper phosphate nanoflowers with enhanced antimicrobial activity. J. Mater. Chem. B 5, 5311-5317 (2017). https://doi.org/10.1039/C7TB00610A
- Wang, X. et al. Facile one-pot preparation of chitosan/calcium pyrophosphate hybrid microflowers. ACS Appl. Mater. Interfaces 6, 14522-14532 (2014). https://doi.org/10.1021/am503787h
- Sun, J. et al. Multi-enzyme co-embedded organic - inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale 6, 255-262 (2014). https://doi.org/10.1039/C3NR04425D
- Chung, M., Jang, Y.J. & Kim, M.I. Convenient colorimetric detection of cholesterol using multi-enzyme co-incorporated organic-inorganic hybrid nanoflowers. J. Nanosci. Nanotechnol. 18, 6555-6561 (2018). https://doi.org/10.1166/jnn.2018.15697
- Li, Z.X. et al. Spatial co-localization of multi-enzymes by inorganic nanocrystal-protein complexes. Chem. Commun. 50, 12465-12468 (2014). https://doi.org/10.1039/C4CC05478D
- Wei, T.X., Du, D., Zhu, M.J., Lin, Y.H. & Dai, Z.H. An improved ultrasensitive enzyme-linked immunosorbent assay using hydrangea-like antibody-enzyme-inorganic three-in-one nanocomposites. ACS Appl. Mater. Interfaces 8, 6329-6335 (2016). https://doi.org/10.1021/acsami.5b11834
- Liu, Y.C. et al. The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker. Biosens. Bioelectron. 92, 68-73 (2017). https://doi.org/10.1016/j.bios.2017.02.004
- Li, H. et al. Graphene oxide-enzyme hybrid nanoflowers for efficient water soluble dye removal. J. Hazard. Mater. 338, 93-101 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.014
-
Ariza-Avidad, M., Salinas-Castillo, A. & Capitan-Vallvey, L. A 3D
${\mu}PAD$ based on a multi-enzyme organic - inorganic hybrid nanoflower reactor. Biosens. Bioelectron. 77, 51-55 (2016). https://doi.org/10.1016/j.bios.2015.09.012 - Lin, Z. et al. Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol. ACS Appl. Mater. Interfaces 6, 10775-10782 (2014). https://doi.org/10.1021/am502757e
- Altinkaynak, C. et al. Preparation of lactoperoxidase incorporated hybrid nanoflower and its excellent activity and stability. Int. J. Biol. Macromol. 84, 402-409 (2016). https://doi.org/10.1016/j.ijbiomac.2015.12.018
- Zeinhom, M.M.A. et al. Smart phone based immunosensor coupled with nanoflower signal amplification for rapid detection of Salmonella Enteritidis in milk, cheese and water. Sens. Actuators B Chem. 261, 75-82 (2018). https://doi.org/10.1016/j.snb.2017.11.093
- Ye, R. et al. One-pot bioinspired synthesis of all-inclusive protein - protein nanoflowers for point-of-care bioassay: detection of E. coli O157: H7 from milk. Nanoscale 8, 18980-18986 (2016). https://doi.org/10.1039/C6NR06870G
- He, L. et al. Protein-templated cobaltous phosphate nanocomposites for the highly sensitive and selective detection of platelet-derived growth factor-BB. Biosens. Bioelectron. 79, 553-560 (2016). https://doi.org/10.1016/j.bios.2015.12.095
- Peng, T. et al. Fluorometric clenbuterol immunoassay based on the use of organic/inorganic hybrid nanoflowers modified with gold nanoclusters and artificial antigen. Microchim. Acta 185, 366 (2018). https://doi.org/10.1007/s00604-018-2889-0
- Lin, Z. et al. Facile synthesis of enzyme - inorganic hybrid nanoflowers and their application as an immobilized trypsin reactor for highly efficient protein digestion. RSC Adv. 4, 13888-13891 (2014). https://doi.org/10.1039/C4RA00268G
- Xu, Z. et al. A new l-arabinose isomerase with copper ion tolerance is suitable for creating protein - inorganic hybrid nanoflowers with enhanced enzyme activity and stability. RSC Adv. 6, 30791-30794 (2016). https://doi.org/10.1039/C5RA27035A
- He, X. H. et al. Self-assembled metalloporphyrins-inorganic hybrid flowers and their application to efficient epoxidation of olefins. J. Chem. Technol. Biotechnol. 92, 2594-2605 (2017). https://doi.org/10.1002/jctb.5275
- Yan, T., Cheng, F., Wei, X., Huang, Y. & He, J. Biodegradable collagen sponge reinforced with chitosan/calcium pyrophosphate nanoflowers for rapid hemostasis. Carbohydr. Polym. 170, 271-280 (2017). https://doi.org/10.1016/j.carbpol.2017.04.080
- Huang, Y.Y., Ran, X., Lin, Y.H., Ren, J.S. & Qu, X.G. Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions. Chem. Commun. 51, 4386-4389 (2015). https://doi.org/10.1039/C5CC00040H
- Yilmaz, E., Ocsoy, I., Ozdemir, N. & Soylak, M. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples. Anal. Chim. Acta 906, 110-117 (2016). https://doi.org/10.1016/j.aca.2015.12.001
- Chung, M. et al. Ultrarapid sonochemical synthesis of enzyme-incorporated copper nanoflowers and their application to mediatorless glucose biofuel cell. Appl. Surf. Sci. 429, 203-209 (2018). https://doi.org/10.1016/j.apsusc.2017.06.242
Cited by
- Fabrication Strategies of 3D Plasmonic Structures for SERS vol.13, pp.1, 2019, https://doi.org/10.1007/s13206-019-3105-y
- Self‐Assembled Metalloporphyrins-Magnesium Phosphate Hybrid Spheres as Efficient Catalysts for Cycloaddition of Carbon Dioxide vol.4, pp.28, 2018, https://doi.org/10.1002/slct.201901845
- Hybrid metal-organic nanoflowers and their application in biotechnology and medicine vol.182, pp.None, 2018, https://doi.org/10.1016/j.colsurfb.2019.110354
- MALDI-TOF Mass Spectrometry Based on Parylene-Matrix Chip for the Analysis of Lysophosphatidylcholine in Sepsis Patient Sera vol.91, pp.22, 2018, https://doi.org/10.1021/acs.analchem.9b04019
- Enhancing Neurogenesis of Neural Stem Cells Using Homogeneous Nanohole Pattern-Modified Conductive Platform vol.21, pp.1, 2018, https://doi.org/10.3390/ijms21010191
- Preparation of a Copper Polyphosphate Kinase Hybrid Nanoflower and Its Application in ADP Regeneration from AMP vol.5, pp.17, 2020, https://doi.org/10.1021/acsomega.0c00329
- ZnO Nanoflower-Based NanoPCR as an Efficient Diagnostic Tool for Quick Diagnosis of Canine Vector-Borne Pathogens vol.9, pp.2, 2020, https://doi.org/10.3390/pathogens9020122
- An electrochemical biosensor for the detection of pathogenic bacteria based on dual signal amplification of Cu3(PO4)2-mediated click chemistry and DNAzymes vol.146, pp.15, 2021, https://doi.org/10.1039/d1an00982f
- Shear Stress-Mediated Growth of Cupric Phosphate Nanostructures vol.21, pp.8, 2021, https://doi.org/10.1021/acs.cgd.1c00453
- The establishment of an immunosensor for the detection of SPOP vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-91944-3
- Two-Dimensional Nanostructures for Electrochemical Biosensor vol.21, pp.10, 2021, https://doi.org/10.3390/s21103369